55011315
Supplier number:
ME909s-120 is the first LTE cat4 module based on Hi-Silicon chipset. Which is high-quality designed LTE module in small size and Huawei standard LGA form factor, especially for industrial-grade M2M applications such as vehicle telematics, tracking, mobile payment, industrial router, safety monitor and industrial PDAs.
ME909s-120 supports 150Mbps downlink data rate, including enhanced features like FOTA, USSD and Huawei enhanced AT commands.
ME909s-120 supports eight (!) bands (B1/B2/B3/B5/B7/B8/B20) in the EMEA region. It also have the form factor Mini PCIe if it suits your need better.
With Huawei pin-to-pin form factor, it is easy to migrate from MU609, MU709 or ME909u family to ME909s-120, and with the ultra-compact design and extended operating temperature range, ME909 and it's siblings are the perfect platform for any M2M application.
This module has the LGA from factor. For the ME909s-120 V2 module with the form factor mini PCIe, please refer to article 11107 Huawei ME909s-120p V2 mPCIe EU.
Datasheet for Huawei ME909s-120 V2 LGA module. For more detailed technical information, see the Huawei ME909s Hardware Guide.
This document describes the hardware application interfaces and air interfaces provided by HUAWEI ME909s Series LGA (ME909s-821 and ME909s-120) LTE Module (hereinafter referred to as the ME909s LGA module).
This document helps hardware engineer to understand the interface specifications, electrical features and related product information of the ME909s LGA module.
This document describes AT command interface specifications that is supported by Huawei Mobile Broadband product ME909s module.
Please read the Release Notes released with the firmware before using ME909s module and this document.
This document describes the Huawei RIL (Radio Interface Layer) for Android and the deliveries included. It includes description on how to integrate the RIL and what is supported.
This guide instructs the kernel driver integration development for Huawei modules based on Linux operating system (OS), such as Android, Ubuntu and Chrome OS. It is intended for the driver developers of the products based on Linux kernel OS.
This document is intended to provide references for customers to choose appropriate command sequences to start using the ME909s series module (ME909s for short) in a faster manner. This document also contains examples and relevant description.
This document describes best practices when designing a USB interface for use with Huawei wireless modules with USB interface capabilities.
This document mainly describes the power supply design for Huawei modules. This document also provides Huawei modules' requirements for power supplies, which can be used as reference for designing power supplies for Huawei modules. This document is composed of four chapters:
Power Supply Requirements
Power Supply Design Requirements
External Power Supply Circuits
Recommendations for the Layout and Routing of External Power Supply Circuits
This guide will make it easier to migrate from one Huawei module to another. This version also includes the ME909s modules.
This guide describes a workaround method for how to enable the serial (AT/NMEA) interfaces in Windows 8 and 10 for Huawei HiSilicon based cellular modules that normally only expose MBIM interface.
This archive contains the guide, library and sample code for accessing Huawei extended AT commands over MBIM interface in Microsoft Windows 8 and newer systems where no AT serial ports are available from Huawei Modules.
HUAWEI LGA Module Dual SIM Single Standby Application Guide
This document contains the open source notice for the ME909s and ME906s series from Huawei.
This guide instructs the kernel driver integration development for Huawei Modules based on Embedded Linux & Android operating system. It is intended for the driver developers of the products based on Embedded Linux & Android OS.
This document describes the difference in the AT Command specification between the ME909s and the ME909u.
This document is intended to provide references for customers to do module firmware update over the air. Customers need to refer to this document to develop the host application. This document also contains examples and relevant description. Huawei module and the related firmware in the table below support the FOTA service.
Huawei UpdateWizard for Embedded Linux is the tool which is just for updating the
firmware of Huawei module.
The tool complies with interfaces of Huawei device and is forbidden to apply to
devices of any other manufacturer.
This document briefly describes the power management related connection hardware
between the host and module.
This document is only applicable to the Windows XP/Android system; and is not
applicable to the Windows 7/8/blue system and later systems released by Microsoft
because of their feature (they defines their own sleep, wakeup and remote wakeup
standards).
This document provides readers with necessary information to develop a multiplexing protocol running on their equipment in order to use the CMUX function provided by Huawei modules.
This archive contains the Huawei Windows desktop systems drivers for HiSilicon chipset based LTE modules and the related release notes
This archive contains the Huawei debug drivers V.2.0.6.1 for HiSilicon chipset based Huawei modules containing drivers supporting the additional USB serial end points exposed when module is set in AT^SETMODE=1 instead of default AT^SETMODE=0
This archive contains the Windows drivers for Huawei modules with HiSilicon chipset
This archive contains the Huawei AT commands over MBIM interface tool used for Windows 8-10 systems to send AT commands to cellular modules not exposing the AT/Modem serial interface endpoints.
This archive contains the Windows drivers V.5.06.04.05 for Huawei modules with HiSilicon chipset
This archive contains the drivers for Huawei ME909s series in windows.
It's backwards compatible with older modules.
HUAWEI only provides Windows CE driver package. It is a stream driver framework. MDD (Model Device Driver) layer supplies the serial device's interface, and PDD (Platform Dependent Driver) layer is responsible for interacting with USB stack. Please refer to MSDN (Microsoft Developer Network) for more information.
This archive contains the Android Radio Interface Layer and the related release notes
It works for android 2.XX to 4.XX.
The Ulog is a log capturing tool for all Huawei modules.
It can work on PCs and various embedded platforms, and supports different operating systems (OS), such as Windows 7, Linux, and Android.
For Windows there's a graphical user interface available. In order to capture logs with Ulog the modules unique shell lock code need to be acquired based on the IMEI.
This package contains Huawei's Update WIzard for Linux, which can be used to update firmware versions on different modules.
Archive containing Linux FWL file and Release Notes for Huawei ME909s-120 and ME909s-120 V2
Archive containing Windows Firmware Updater Tool and Release Notes for Huawei ME909s-120 and ME909s-120 V2
Archive containing the necessary firmware files for updating the Huawei ME909s-120 firmware through FOTA (Firmware Over-The-Air) method.
Archive containing the Windows-based one-click firmware update tool as well as binary file. Included is also the firmware delta update files for partial firmware upgrade and release notes.
This is the full FWLOAD update file to be used when doing local upgrades of the ME909s-120.
This is not the firmware, but includes only the ME909s-120 Firmware Release Notes (11.617.24.00.00)
This archive contains the Release Notes and the Linux updater file to the firmware 11.617.01.00.00 for the module ME909s-120.
This archive contains the Huawei ME909s-120 firmware V.11.617.09.00.00 full fwload update file and release notes
This archive contains the Huawei ME909s-120 Windows based firmware V.11.617.09.00.00 updater and release notes
Please see the ME909s-120 Application Fuide for details on how to perform local full firmware update with AT commands.
This archive contains the Huawei ME909s-120 Firmware Updater V.11.617.06.00.00 for Windows with release notes
This archive contains the Release Notes and the Windows updater for the module ME909s-120 to version 11.617.01.00.00.
How to use NetworkManager and ModemManager in Linux to automatically establish and maintain a cellular data connection?
Using NetworkManager and ModemManager in Linux to automatically establish and maintain the cellular data connection
In this FAQ we will show how to set up NetworkManager to automatically configure, establish and maintain the cellular data connection in your system.
NetworkManager and ModemManager are open source tool for Linux to manage several types of networks and interfaces such as ethernet, wifi, etc. It can also manage cellular WWAN interfaces through the ModemManager tool.
It is hosted by the Freedesktop.org community and driven by Aleksander Morgado and other contributors. please visit https://wiki.gnome.org/Projects/NetworkManager and https://www.freedesktop.org/wiki/Software/ModemManager/ for latest information, source code, API reference manuals, debugging tips, contribution, mailing list etc.
ModemManager is capable of communicating over several types of device control channels such as QMI/RMNET, MBIM, MODEM / AT command etc. But support for vendor proprietary or out-of-kernel drivers are limited. Such drivers are gobinet, simcom_wwan and other drivers provided by the vendors directly.
Many Linux distributions have NetworkManager and ModemManager pre-installed or they can typically easily be installed through the systems package manager.
In Ubuntu for example apt can install it for you by command:
apt install network-manager
Check with commands below that you have both tools installed in system and their versions.
NetworkManager -V
ModemManager -V
ModemManager (and NetworkManager) are continuously developed for better compatibility with the cellular devices, therefore it is recommend to use a recent version of the tools and in case of problem situations, evaluate the latest versions from source and check the mailing list archives for possible discussions on the problem experienced.
Keep in mind that NetworkManager and ModemManager projects are not directly developed or driven by the cellular device vendors and the compatibility with the device you aim to use can be limited. Some vendors contribute with code to make their devices fully compatible, while others don't. Many cellular devices can be set to expose standardized types of USB network interface and control channel such as MBIM interface by USB-IF or the Qualcomm proprietary interface QMI that ModemManager will try to identify, and often manage to work successfully with but there are exceptions also.
Both NetworkManager and ModemManager have command line interfaces (nmcli and mmcli respectively) where you can interact with the management tools.
Relate to the following FAQ if you want more details for using ModemManager only to configure and control the cellular device but manually establish, maintain the connection and network interface IP address details.
How-to guide: control and set up a data connection in Linux using ModemManager as connection manager?
Have ModemManager list all the cellular device it has detected. Here we use the Alcatel IK41 series with MBIM interface in this example:
mmcli --list-modems
/org/freedesktop/ModemManager1/Modem/0 [Alcatel] Mobilebroadband
General details and status of them modem can be listed with "--modem" option.
mmcli --modem=0
-----------------------------
General | dbus path: /org/freedesktop/ModemManager1/Modem/0
| device id: 998e478c5b14c75e16bffe6abaacabef22fb2f5b
-----------------------------
Hardware | manufacturer: Alcatel
| model: Mobilebroadband
| firmware revision: MPSS.JO.2.0.2.c1.7-00004-9607_
| carrier config: default
| h/w revision: 0
| supported: gsm-umts, lte
| current: gsm-umts, lte
| equipment id:
-----------------------------
System | device: /sys/devices/pci0000:00/0000:00:14.0/usb3/3-1
| drivers: option1, cdc_mbim
| plugin: Generic
| primary port: cdc-wdm0
| ports: cdc-wdm0 (mbim), ttyUSB0 (at), ttyUSB2 (at), wwan0 (net),
| ttyUSB1 (qcdm)
-----------------------------
Status | lock: sim-pin
| unlock retries: sim-pin (3)
| state: locked
| power state: on
| signal quality: 0% (cached)
-----------------------------
Modes | supported: allowed: 2g; preferred: none
| allowed: 3g; preferred: none
| allowed: 4g; preferred: none
| allowed: 2g, 3g; preferred: 3g
| allowed: 2g, 3g; preferred: 2g
| allowed: 2g, 4g; preferred: 4g
| allowed: 2g, 4g; preferred: 2g
| allowed: 3g, 4g; preferred: 3g
| allowed: 3g, 4g; preferred: 4g
| allowed: 2g, 3g, 4g; preferred: 4g
| allowed: 2g, 3g, 4g; preferred: 3g
| allowed: 2g, 3g, 4g; preferred: 2g
| current: allowed: 2g, 3g, 4g; preferred: 2g
-----------------------------
Bands | supported: egsm, dcs, pcs, g850, utran-1, utran-8, eutran-1, eutran-3,
| eutran-7, eutran-8, eutran-20, eutran-28
| current: egsm, dcs, pcs, g850, utran-1, utran-8, eutran-1, eutran-3,
| eutran-7, eutran-8, eutran-20, eutran-28
-----------------------------
IP | supported: ipv4, ipv6, ipv4v6
-----------------------------
SIM | dbus path: /org/freedesktop/ModemManager1/SIM/0
Check that the cellular device is managed by NetworkManager by not having state "unmanaged" listed for it.
nmcli device status
DEVICE TYPE STATE CONNECTION
cdc-wdm0 gsm disconnected --
enp3s0 ethernet unmanaged --
lo loopback unmanaged --
Now you should create a connection profile in NetworkManager for your specific network carrier and SIM card with the "nmcli connection add" command:
For example:
nmcli connection add type gsm ifname '*' con-name '3-sweden' apn 'data.tre.se' connection.autoconnect yes gsm.pin 0000
- type is gsm for all typical cellular connections unless it is of cdma type.
- ifname is the control interface name, in this case cdc-wdm0, wildcard can be used also to have it autoselect.
- con-name is the profile name you want to give it.
- apn is provided by your network carrier and tells the modem what attach point it should use for the data connection.
- connection.autoconnect set to yes will make NetworkManager always try to auto connect and maintain this profile connection.
- gsm.pin lets you provide a pin code for the SIM card, that NetworkManager will try to use if PIN check is enabled for SIM card.
There are several additional commands and attributes available such as username and password settings for the APNs etc. Refer to the NetworkManager help and manual pages for full details on the commands.
If successful you should receive a reply similar to this one:
Connection '3-sweden' (cad6fcbf-2cb1-4796-b7e6-67b9f9635aef) successfully added.
You can check the status now by command:
nmcli device status
DEVICE TYPE STATE CONNECTION
cdc-wdm0 gsm connected 3-sweden
enp3s0 ethernet unmanaged --
lo loopback unmanaged --
Where connected should be listed as state if the connection establishment was successful.
If the connection is not successful or you want more details about the device and connection you can check commands:
You can list the current status with command:
nmcli radio
WIFI-HW WIFI WWAN-HW WWAN
enabled enabled enabled enabled
nmcli device show cdc-wdm
GENERAL.DEVICE: cdc-wdm0
GENERAL.TYPE: gsm
GENERAL.HWADDR: (unknown)
GENERAL.MTU: 1500
GENERAL.STATE: 100 (connected)
GENERAL.CONNECTION: 3-sweden
GENERAL.CON-PATH: /org/freedesktop/NetworkManager/ActiveConnection/18
IP4.ADDRESS[1]: 2.68.73.130/30
IP4.GATEWAY: 2.68.73.129
IP4.ROUTE[1]: dst = 2.68.73.128/30, nh = 0.0.0.0, mt = 700
IP4.ROUTE[2]: dst = 0.0.0.0/0, nh = 2.68.73.129, mt = 700
IP4.DNS[1]: 80.251.201.177
IP4.DNS[2]: 80.251.201.178
IP6.ADDRESS[1]: 2a02:aa1:1017:6d11:1060:3dff:feac:e92f/64
IP6.ADDRESS[2]: 2a02:aa1:1017:6d11:6474:7254:7b72:eb09/64
IP6.GATEWAY: 2a02:aa1:1017:6d11:21e6:9049:6cfb:8ac3
IP6.ROUTE[1]: dst = ff00::/8, nh = ::, mt = 256, table=255
IP6.ROUTE[2]: dst = 2a02:aa1:1017:6d11::/64, nh = ::, mt = 700
IP6.ROUTE[3]: dst = ::/0, nh = fe80::21e6:9049:6cfb:8ac3, mt = 1024
IP6.ROUTE[4]: dst = 2a02:aa1:1017:6d11::/64, nh = ::, mt = 256
IP6.ROUTE[5]: dst = ::/0, nh = 2a02:aa1:1017:6d11:21e6:9049:6cfb:8ac3, mt = 700
IP6.DNS[1]: 2a02:aa0::55
IP6.DNS[2]: 2a02:aa0::56
nmcli connection show
NAME UUID TYPE DEVICE
3-sweden e946017f-2e9c-477b-89ad-4c31e7331d65 gsm cdc-wdm0
Ifconfig should now show the related IP address details already set to the network interface by NetworkManager:
ifconfig
wwan0: flags=4291 mtu 1500
inet 2.68.73.130 netmask 255.255.255.252 broadcast 2.68.73.131
inet6 2a02:aa1:1017:6d11:6474:7254:7b72:eb09 prefixlen 64 scopeid 0x0
inet6 2a02:aa1:1017:6d11:1060:3dff:feac:e92f prefixlen 64 scopeid 0x0
ether 12:60:3d:ac:e9:2f txqueuelen 1000 (Ethernet)
RX packets 186 bytes 10886 (10.8 KB)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 5 bytes 480 (480.0 B)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
You can now for example test the connection over the network interface by sending ping requests.
Testing IPV4 connection:
ping -4 -I wwan0 8.8.8.8
PING 8.8.8.8 (8.8.8.8) from 2.68.73.130 wwan0: 56(84) bytes of data.
64 bytes from 8.8.8.8: icmp_seq=1 ttl=118 time=55.8 ms
64 bytes from 8.8.8.8: icmp_seq=2 ttl=118 time=45.4 ms
64 bytes from 8.8.8.8: icmp_seq=3 ttl=118 time=42.9 ms
--- 8.8.8.8 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2003ms
rtt min/avg/max/mdev = 42.918/48.053/55.845/5.601 ms
Testing IPV6 connection: (if your cellular device, network subscription and APN supports it)
ping -6 -I wwan0 2600::
PING 2600::(2600::) from 2a02:aa1:1017:6d11:1060:3dff:feac:e92f wwan0: 56 data bytes
64 bytes from 2600::: icmp_seq=1 ttl=46 time=172 ms
64 bytes from 2600::: icmp_seq=2 ttl=46 time=171 ms
64 bytes from 2600::: icmp_seq=3 ttl=46 time=169 ms
64 bytes from 2600::: icmp_seq=4 ttl=46 time=168 ms
--- 2600:: ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3004ms
rtt min/avg/max/mdev = 167.921/170.037/172.272/1.651 ms
The connection is successful and automatic reconnect is working when testing to unplug and plug in the device again.
For additional configurations, commands and available attributes, please relate to the manual pages for NetworkManager and ModemManager.
How-to guide: How can we control, configure and establish a simple data connection for a cellular module in Linux systems using the open source ModemManager tool for modem control and connection management.
ModemManager is a open source tool for Linux that can be used to communicate with cellular devices for configuration, status check, connection triggering etc. It is capable of communicate over several types of device control channels such as QMI/RMNET, MBIM, MODEM / AT command etc.
It is hosted by the Freedesktop.org community and driven by Aleksander Morgado and other contributors, please visit https://www.freedesktop.org/wiki/Software/ModemManager/ for latest information, source code, API reference manuals, debugging tips, contribution, mailing list etc.
Keep in mind that ModemManager is not directly developed or driven by cellular device vendors and the compatibility cannot be guaranteed for the specific device you aim to use. Some vendors contribute with code to make their devices fully compatible, while others don't. However many cellular devices can be set to expose standardized types of USB network interface and control channel such as MBIM interface by USB-IF or the Qualcomm proprietary interface QMI that ModemManager will try to identify, and often manage to work successfully with.
Before continuing with ModemManager, a good thing to ensure is that you have common Linux driver modules available in your kernel build.
You can compare your own systems kernel config with the ones listed in the following FAQ:
Common Linux kernel modules and configs necessary for communicating with cellular modules over USB interface
Selections of these are commonly used by cellular devices and need to be available in order to have device drivers correctly loaded when devices are detected.
Start by installing ModemManager and its dependencies to your Linux system.
You can build it from source code release tarball found at freedesktop.org (install instructions included in the archive)
If you have a package manager in your Linux distribution, it can usually be installed through them also.
E.g. on Ubuntu using apt to install it and related dependencies:
apt install modemmanager libmbim-utils libqmi-utils
Keep in mind that Linux distributions sometimes rely on fairly old releases in their repositories and the development of ModemManager, libqmi and libmbim are on-going continuously. So is also the development of the cellular devices when the cellular technologies evolve. It is therefore recommended that you have a fairly recent version of ModemManager, libqmi and libmbim running in your system as well as when it comes to kernel version since the driver modules sometimes acquire patch fixes to be compatible with new chipset features etc.
Check Freedesktop.org pages for details on the latest ModemManager, NetworkManager, Libqmi and Libmbim releases.
Once you've installed ModemManager and rebooted your system, the service daemon should be running already in background.
Mmcli is the related command line interface tool which can be used to interact with ModemManager daemon through command line commands.
Check the version by command:
mmcli -V
<< mmcli 1.13.0
<< Copyright (2011 - 2020) Aleksander Morgado
<< License GPLv2+: GNU GPL version 2 or later
<< This is free software: you are free to change and redistribute it.
<< There is NO WARRANTY, to the extent permitted by law.
Print general mmcli help message:
mmcli --help
ModemManager normally listen, probes and detects cellular devices automatically when operating correctly but a forced scan can be triggered with command:
mmcli --scan-modems
<< successfully requested to scan devices
To list detected cellular devices use command:
mmcli --list-modems
<< /org/freedesktop/ModemManager1/Modem/0 [Sierra Wireless, Incorporated] MC7455
Here ModemManager have detected a Sierra Wireless cellular device and it has here been given the the identifier number 0 by ModemManager.
To acquire more device information and status use the --modem command and identifier value.
mmcli --modem=0
<< -----------------------------
<< General | dbus path: /org/freedesktop/ModemManager1/Modem/0
<< | device id: 3a2f5fad8e91dbf417694f23165017c1f8a6e061
<< -----------------------------
<< Hardware | manufacturer: Sierra Wireless, Incorporated
<< | model: MC7455
<< | firmware revision: SWI9X30C_02.32.11.00 r8042 CARMD-EV-FRMWR2 2019/05/15 21:52:20
<< | carrier config: default
<< | h/w revision: 1.0
<< | supported: gsm-umts, lte
<< | current: gsm-umts, lte
<< | equipment id: 359072066171840
<< -----------------------------
<< System | device: /sys/devices/pci0000:00/0000:00:14.0/usb3/3-2
<< | drivers: qcserial, qmi_wwan
<< | plugin: sierra
<< | primary port: cdc-wdm0
<< | ports: cdc-wdm0 (qmi), wwan1 (net), ttyUSB2 (at), wwan0 (net),
<< | cdc-wdm1 (qmi), ttyUSB1 (gps), ttyUSB0 (qcdm)
<< -----------------------------
<< Status | lock: sim-pin
<< | unlock retries: sim-pin (3), sim-puk (10), sim-pin2 (0), sim-puk2 (10)
<< | state: locked
<< | power state: on
<< | signal quality: 0% (cached)
<< -----------------------------
<< Modes | supported: allowed: 3g; preferred: none
<< | allowed: 4g; preferred: none
<< | allowed: 3g, 4g; preferred: 4g
<< | allowed: 3g, 4g; preferred: 3g
<< | current: allowed: 3g, 4g; preferred: 4g
<< -----------------------------
<< Bands | supported: utran-1, utran-3, utran-4, utran-5, utran-8, utran-2,
<< | eutran-1, eutran-2, eutran-3, eutran-4, eutran-5, eutran-7, eutran-8,
<< | eutran-12, eutran-13, eutran-20, eutran-25, eutran-26, eutran-29,
<< | eutran-30, eutran-41
<< | current: utran-1, utran-3, utran-4, utran-5, utran-8, utran-2,
<< | eutran-1, eutran-2, eutran-3, eutran-4, eutran-5, eutran-7, eutran-8,
<< | eutran-12, eutran-13, eutran-20, eutran-25, eutran-26, eutran-29,
<< | eutran-30, eutran-41
<< -----------------------------
<< IP | supported: ipv4, ipv6, ipv4v6
<< -----------------------------
<< SIM | dbus path: /org/freedesktop/ModemManager1/SIM/0
A detailed summary of device status, configs and system drivers, paths and IDs are returned.
Currently the device status indicates that inserted SIM card is PIN locked, so a unlock by --pin command is necessary:
mmcli --modem=0 --sim=0 --pin=****
<< successfully sent PIN code to the SIM
Now we can change device state to enabled using command:
mmcli --modem=0 --enable
<< successfully enabled the modem
if we're check device status again we can see that device:
mmcli --modem=0
…
<< --------------------------------
<< Status | lock: sim-puk2
<< | unlock retries: sim-pin (3), sim-puk (10), sim-pin2 (0), sim-puk2 (10)
<< | state: registered
<< | power state: on
<< | access tech: lte
<< | signal quality: 96% (recent)
…
<< 3GPP | imei: 359072066171840
<< | operator id: 24002
<< | operator name: 3
<< | registration: home
<< --------------------------------
<< 3GPP EPS | ue mode of operation: csps-2
<< --------------------------------
<< SIM | dbus path: /org/freedesktop/ModemManager1/SIM/0
The status output shows that devices is registered in network using LTE technology with a good signal strength.
It is now time to activate the data connection with --simple-connect command.
ModemManager will tie the data bearer for our given subscription APN to the qmi_wwan network interface, typically named wwan0 (unless renamed by Linux distribution or user)
Fill in the details as below but for your modem number, subscription APN and the IP type it can work with (ipv4 / ipv6 ipv4v6)
mmcli -m 0 --simple-connect='apn=data.tre.se,ip-type=ipv4v6'
<< successfully connected the modem
if we check modem status again we can see that a bearer have been established.
mmcli --modem=0
…
<< --------------------------------
<< Bearer | dbus path: /org/freedesktop/ModemManager1/Bearer/0
…
The bearer have got identifier number 0 so we can request more details for it to acquire the IP details:
mmcli --modem=0 --bearer=0
<< ------------------------------------
<< General | dbus path: /org/freedesktop/ModemManager1/Bearer/0
<< | type: default
<< ------------------------------------
<< Status | connected: yes
<< | suspended: no
<< | interface: wwan1
<< | ip timeout: 20
<< ------------------------------------
<< Properties | apn: data.tre.se
<< | roaming: allowed
<< | ip type: ipv4v6
<< ------------------------------------
<< IPv4 configuration | method: static
<< | address: 2.68.206.100
<< | prefix: 29
<< | gateway: 2.68.206.101
<< | dns: 80.251.201.177, 80.251.201.178
<< | mtu: 1500
<< ------------------------------------
<< IPv6 configuration | method: static
<< | address: 2a02:aa1:1010:b6bb:6d12:d0dc:978e:3982
<< | prefix: 64
<< | gateway: 2a02:aa1:1010:b6bb:21ea:c721:62c3:9760
<< | dns: 2a02:aa0::55, 2a02:aa0::56
<< | mtu: 1500
<< ------------------------------------
<< Statistics | duration: 450
<< | bytes rx: 6693
<< | attempts: 1
<< | total-duration: 450
<< | total-bytes rx: 6693
From here we can see the IP details we've been assigned by the cellular network.
ModemManager does not assign IPv4 address details to the cellular modules network interface in Linux by itself.
When ModemManager is used in conjunction with NetworkManager and the cellular connection is managed by it, then the IPv4 address details will be collected by NetworkManager through ModemManager and automatically assigned to network interface when connection is established.
If the system does not implement NetworkManager, then the IP and routing configuration needs to be handled by user software/scripting.
Example:
Enable network interface in Linux:
ip link set wwan0 up
Set the IPv4 address acquired from bearer information above, the CIDR subnet mask can always be set to 32:
ip addr add 2.68.206.100/32 dev wwan0
Disable ARP:
ip link set dev wwan0 arp off
Set MTU value acquired from network:
ip link set dev wwan0 mtu 1500
Add a default or other type of route to the cellular network device (e.g. with a metric to set which route to prefer)
ip route add default dev wwan0 metric 200
Add the DNS servers reported by cellular network or use other public/desired ones.
DNS server addresses are handled in different ways depending on the Linux distribution and network manager used. Therefore please refer to related dist documentation for best practice to add / maintain DNS server addresses in your specific system.
sh -c "echo 'nameserver 80.251.201.177' >> /etc/resolv.conf"
sh -c "echo 'nameserver 80.251.201.178' >> /etc/resolv.conf"
We should now have a network interface passing data successfully, we can try it out by doing ping requests:
IPv4 data:
ping -4 -c 4 -I wwan0 8.8.8.8
PING 8.8.8.8 (8.8.8.8) from 2.68.206.100 wwan0: 56(84) bytes of data.
64 bytes from 8.8.8.8: icmp_seq=1 ttl=57 time=50.8 ms
64 bytes from 8.8.8.8: icmp_seq=2 ttl=57 time=48.8 ms
64 bytes from 8.8.8.8: icmp_seq=3 ttl=57 time=24.0 ms
64 bytes from 8.8.8.8: icmp_seq=4 ttl=57 time=44.8 ms
--- 8.8.8.8 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3005ms
rtt min/avg/max/mdev = 23.979/42.115/50.840/10.694 ms
IPv6 data:
ping -6 -c 4 -I wwan0 2600::
PING 2600::(2600::) from 2a02:aa1:1010:b6bb:8962:7405:b81c:7627 wwan0: 56 data bytes
64 bytes from 2600::: icmp_seq=1 ttl=47 time=179 ms
64 bytes from 2600::: icmp_seq=2 ttl=47 time=176 ms
64 bytes from 2600::: icmp_seq=3 ttl=47 time=175 ms
64 bytes from 2600::: icmp_seq=4 ttl=47 time=177 ms
--- 2600:: ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3004ms
rtt min/avg/max/mdev = 175.411/176.935/179.268/1.446 ms