The Sierra Wireless EM7455 Embedded Module is an LTE Cat 6 M.2 module that provides LTE, UMTS, and GNSS connectivity for notebook, ultrabook, tablet computers, and M2M applications over 15 different LTE radio frequency bands globally with primary target area Americas and EMEA.
The EM7455 will allow a maximum downlink speed of 300 Mbps and a maximum uplink speed of 50 Mbps, including LTE Advanced, with automatic fall back to 3G networks.
You might also be interested in Sierra Wireless' newer Cat-7 EM74x1;
11095, Sierra Wireless EM7421 EMEA/APAC
11092, Sierra Wireless EM7411 NAM
Migration guide for customers migrating applications from Sierra Wireless EM74xx or EM75xx modules to EM7590 modules.
This ZIP archive contains the Mobile Broadband Package for Linux, including the SDK, USB drivers, and the Software Integration and Development Guide.
Mobile Broadband Package for Linux - SDK binaries
Mobile Broadband Package for Linux - Driver binaries
Software Integration and Development Guide
Linux
This archive contains the Sierra Wireless MC/EM7455 Firmware file with generic operator PRI configuration plus related release notes.
One click firmware update application for Windows and firmware update binaries for Linux systems.
Windows: Sierra Wireless Windows drivers installed
Linux: GobiNet and GobiSerial drivers in use and the firmware download sample application from Sierra Wireless QMI SDK package.
Archive containing the one click executable application file for updating the Sierra Wireless modules firmware in Windows, the binary files for updating in Linux, as well as the related release notes.
Archive containing the one click executable application file for updating the Sierra Wireless modules firmware in Windows, the binary files for updating in Linux, as well as the related release notes.
Archive containing the one click executable application file for updating the Sierra Wireless modules firmware in Windows, the binary files for updating in Linux, as well as the related release notes.
Archive containing the one click executable application file for updating the Sierra Wireless modules firmware in Windows, the binary files for updating in Linux, as well as the related release notes.
Archive containing the one click executable application file for updating the Sierra Wireless modules firmware in Windows, the binary files for updating in Linux, as well as the related release notes.
Archive containing the one click executable application file for updating the Sierra Wireless modules firmware in Windows, the binary files for updating in Linux, as well as the related release notes.
Archive containing the one click executable application file for updating the Sierra Wireless modules firmware in Windows, the binary files for updating in Linux, as well as the related release notes.
Archive containing the one click executable application file for updating the Sierra Wireless modules firmware in Windows, the raw binary files for updating in Linux, as well as the related release notes.
Archive containing the one click executable application file for updating the Sierra Wireless modules firmware in Windows, the binary files for updating in Linux, as well as the related release notes.
EOL notification 4134937 for Sierra Wireless EM-MC7455 / 7430
PCN 4134846 for Sierra Wireless EM and MC series products and introduction of alternate memory sources.
How to establish a basic data connection using Sierra Wireless GobiNet driver and AT commands
A basic data connection can be established with AT commands when the Sierra Wireless module is used in USB mode: Qmi/Rmnet. This is supported when using the Sierra Wireless Windows drivers or the GobiNet + GobiSerial drivers. Please be aware that this is not supported when using the Linux in-kernel driver qmi_wwan.
Download and install the host OS drivers from the Techship product webpage. For Linux drivers follow the instructions in the "Linux QMI SDK Application Developers Guide". Make sure to build the GobiNet driver with RAWIP parameter set to 1.
When the drivers are set up correctly in Linux the USB endpoints should be bound as following:
usb-devices
T: Bus=02 Lev=01 Prnt=01 Port=03 Cnt=01 Dev#= 2 Spd=5000 MxCh= 0
D: Ver= 3.10 Cls=00(>ifc ) Sub=00 Prot=00 MxPS= 9 #Cfgs= 1
P: Vendor=1199 ProdID=9091 Rev=00.06
S: Manufacturer=Sierra Wireless, Incorporated
S: Product=Sierra Wireless EM7565 Qualcomm® Snapdragon™ X16 LTE-A
S: SerialNumber=UF74248663020633
C: #Ifs= 4 Cfg#= 1 Atr=a0 MxPwr=896mA
I: If#=0x0 Alt= 0 #EPs= 2 Cls=ff(vend.) Sub=ff Prot=ff Driver=GobiSerial
I: If#=0x2 Alt= 0 #EPs= 3 Cls=ff(vend.) Sub=00 Prot=00 Driver=GobiSerial
I: If#=0x3 Alt= 0 #EPs= 3 Cls=ff(vend.) Sub=00 Prot=00 Driver=GobiSerial
I: If#=0x8 Alt= 0 #EPs= 3 Cls=ff(vend.) Sub=ff Prot=ff Driver=GobiNet
First, start by enabling the modules network interface bound to the GobiNet driver, default name is usually wwan0. If not found check e.g in "dmesg" what it has been renamed to. Write:
ip link set wwan0 up
Now access the serial modem interface accepting AT commands with a serial interpreter.
In Windows it is the interface found under modem tree in device manager. You can e.g. use a tool like Teraterm to communicate manually with the module.
In Linux the GobiSerial interfaces are listed as ttyUSB interfaces in the /dev/ folder, usually /dev/ttyUSB2 is bound to the modem interface accepting AT commands. Tools like minicom can be used to communicate over a serial interface. For example: minicom -D /dev/ttyUSB2
Check that you get an OK reply from the command AT. Now perform normal initiation commands to have module registered in network, such as setting normal operational mode, entering PIN code if required for SIM card etc.
Define correct APN for your cellular subscription with the AT+CGDCONT command if it is not already correctly entered:
AT+CGDCONT=1, "IPV4V6", "your.operators.apn"
Now you can activate the data connection with the command AT!SCACT=state,pid. For example activating the connection for CGDCONT profile 1:
AT!SCACT=1,1
Once OK is received, you can go ahead and execute a DHCP client on the GobiNet network interface from your Linux host. (In Windows this is all done automatically). For example uou can use dhclient in ubuntu:
dhclient -v wwan0
Now we should have a working network connection in your system over the modules network interface. You can for example test it in Linux by pinging Googles name server:
ping -I wwan0 8.8.8.8
PING 8.8.8.8 (8.8.8.8) from 10.70.245.136 wwan0: 56(84) bytes of data.
64 bytes from 8.8.8.8: icmp_seq=1 ttl=53 time=176 ms
64 bytes from 8.8.8.8: icmp_seq=2 ttl=53 time=79.6 ms
64 bytes from 8.8.8.8: icmp_seq=3 ttl=53 time=69.5 ms
64 bytes from 8.8.8.8: icmp_seq=4 ttl=53 time=67.6 ms
64 bytes from 8.8.8.8: icmp_seq=5 ttl=53 time=55.5 ms
^C
--- 8.8.8.8 ping statistics ---
5 packets transmitted, 5 received, 0% packet loss, time 4008ms
rtt min/avg/max/mdev = 55.533/89.558/175.584/43.687 ms
Please relate to the modules AT commands guide for full explanations of the AT commands. This is a brief example of how to establish a network connection. For automating the procedure additional status checks are highly recommended as well as looking into integrating Sierra Wireless Linux QMI SDK instead of only relying on legacy AT commands.
In Windows 8 and later systems it is recommended to set the module in MBIM USB mode instead of the default QMI/RMNET mode to enable support for Windows built in connection manager. Please see the FAQ section for more details on how to do so.
How to step by step set up a data connection over QMI interface using qmicli and in-kernel driver qmi_wwan in Linux?
Several cellular modules based on Qualcomm chipsets implements the Qualcomm Qualcomm MSM (QMI) Interface.
There is a open source Linux in-kernel driver supporting this interface and it is called qmi_wwan. This driver can be used together with ModemManager and NetworkManager to automate connection establishment and as a connection manager.
The library libqmi which ModemManager uses can also be used to communicate in a more direct way with the cellular devices over the QMI interface and to step by step do necessary configurations and trigger the data connection over the cellular network.
A selection of cellular modules can be supported:
Using RAW IP kernel configuration:
Sierra Wireless MC74 series, EM74 series, EM75** series
Telit LM940, LM960
Telit LN94x series (requires USB mode switch)
Simcom SIM7500 series, SIM7600 series, SIM7600 -H series
(can be supported in qmi_wwan driver from kernel 4.18 or by applying the following one line qmi_wwan source code patch on previous kernel builds: qmi_wwan: apply SET_DTR quirk to the SIMCOM shared device ID)
Using 802.3 IP framing kernel configuration:
Simcom SIM7100 series
Sierra Wireless MC73**/EM73** series
ModemManager combined with NetworkManager will detect the cellular modules automatically in most cases, please refer to their respective documentations on how to establish a data connection using them.
Example on how to set up the data connection step by step manually with libqmi:
First install the libqmi Linux library e.g. by using your system package manager like apt or preferably latest version from source on the Freedesktop pages for libqmi project: https://www.freedesktop.org/wiki/Software/libqmi/
Verify that you have the Linux in-kernel qmi_wwan driver installed and attached for the cellular modules QMI interface over USB:
lsusb -t
Can look e.g. like this:
...
|__ Port 1: Dev 3, If 2, Class=Vendor Specific Class, Driver=qmi_wwan, 480M
...
If the driver is not correctly loaded, please verify that the module is set to expose the correct USB endpoints configuration toward the host system and that you have followed the provided guides from the cellular module vendors, regarding how to implement the module in Linux.
Libqmi expose a command line interface that can be used to communication with the module over QMI interface.
The qmicli help will output information about all commands available:
qmicli --help-all
The cellular modules QMI control interface are usually named cdc-wdm* e.g.:
qmicli --device=/dev/cdc-wdm0
In order to allow parallel commands to be execute on the module over QMI interface, it is recommended to use the libqmi proxy function. This can be done by including the attribute -p or --device-open-proxy in every qmicli command.
If a SIM pin is required for the SIM card, use command bellow:
qmicli --device=/dev/cdc-wdm0 -p --dms-uim-verify-pin=PIN,1234
The name of the related network interface to QMI control channel can be acquired with the command:
qmicli --device=/dev/cdc-wdm0 --device-open-proxy --get-wwan-iface
The most recent Qualcomm based cellular modules only expose QMI interfaces that can support Raw-IP mode. Sierra Wireless EM/MC74 and EM75 series modules, Telit LM940 and LN940 series for example require this.
Check what IP-mode the host system is configured for:
qmicli --device=/dev/cdc-wdm0 --get-expected-data-format
Check what IP-mode the cellular module require:
qmicli --device=/dev/cdc-wdm0 --device-open-proxy --wda-get-data-format
to change qmi_wwan driver to use Raw-IP.
Disable the network interfaces exposed by the cellular module:
ip link set dev wwan0 down
Trigger the Raw-IP support:
echo Y > /sys/class/net/wwan0/qmi/raw_ip
Enable the network interfaces again:
ip link set dev wwan0 up
Now the data connection in the cellular module can be activated e.g. with a IPv4 type configuration on the specified APN:
qmicli --device=/dev/cdc-wdm0 --device-open-proxy --wds-start-network="ip-type=4,apn=data.tre.se" --client-no-release-cid
Once "Network started" is displayed, you can send a DHCP request on the network interface.
Please note that not all DHCP clients in Linux can support Raw-IP format, udhcpc however support this for IPv4 over Raw-IP.
udhcpc -q -f -n -i wwan0
Disconnect the data bearer and data connection over QMI by command bellow and providing the network handle and CID returned at connection activation:
qmicli --device=/dev/cdc-wdm0 --device-open-proxy --wds-stop-network=NETWORK_HANDLE --client-cid=CID
Additional useful commands:
Request module manufacturer:
qmicli --device=/dev/cdc-wdm0 --device-open-proxy --dms-get-manufacturer
Get module model:
qmicli --device=/dev/cdc-wdm0 --device-open-proxy --dms-get-model
Get firmware version:
qmicli --device=/dev/cdc-wdm0 --device-open-proxy --dms-get-revision
Get module IDs (IMEI etc.):
qmicli --device=/dev/cdc-wdm0 --device-open-proxy --dms-get-ids
Get SIM card status:
qmicli --device=/dev/cdc-wdm0 --device-open-proxy --uim-get-card-status
Recent cellular modules like Sierra Wireless EM7565 require at least libqmi V1.20. Check version with command:
qmicli --version
If the connection was successfully set up established, you now have data connectivity. A ping to a remote server using the cellular network interface can for example prove this:
ping -I wwan0 8.8.8.8
The ifconfig Linux tool can show the current details for the network interface:
ifconfig wwan0
libqmi is well integrated and supported in ModemManager tool for Linux. ModemManager again is well integrated and supported when using NetworkManager tool in Linux. Please note however that these two tools expect the cellular module interfaces to only be used by them so if you manually want to use the libqmi library or AT commands interfaces, please turn off/disable ModemManager and NetworkManager first.
The libqmi is a generic open source library for Linux systems and QMI protocol from Qualcomm, therefor there are commands only working on selected devices and not necessarily supported on the device you use, resulting in an error message.
What Linux kernel modules and configs are commonly used for communicating with cellular modules over their USB interface?
Most cellular modules can be supported in Linux by using som of the in-kernel drivers. The physical data interface to the host Linux system is usually done over USB which enumerates a set of different endpoints/interfaces. A set of serial interfaces for Modem/PPP, AT commands, NMEA location data and chipset debug information are almost always available in all configurations.
In addition some type of network endpoint/interface are also available and exposed. This can vary between manufacturers and chipset vendors and can also commonly be configurable by using USB configuration mode switching or through vendor specific AT commands.
Recommended kernel configurations to enable are listed bellow. Many cellular modules base their Linux support on these modules and drivers. Once included in the kernel build, the USB interfaces will be detected and bound correctly out-of-the-box or after applying source code patches to the driver modules.
Configs for USB serial drivers:
CONFIG_USB_SERIAL
CONFIG_USB_SERIAL_GENERIC
CONFIG_USB_SERIAL_WWAN
CONFIG_USB_SERIAL_OPTION
CONFIG_USB_SERIAL_QUALCOMM
CONFIG_USB_ACM
Configs for Modem/PPP support:
CONFIG_PPP
CONFIG_PPP_BSDCOMP
CONFIG_PPP_DEFLATE
CONFIG_PPP_FILTER
CONFIG_PPP_MPPE
CONFIG_PPP_MULTILINK
CONFIG_PPPOE
CONFIG_PPP_ASYNC
CONFIG_PPP_SYNC_TTY
Configs for USB network drivers:
CONFIG_USB_USBNET
CONFIG_USB_NET_QMI_WWAN
CONFIG_USB_NET_CDCETHER
CONFIG_USB_NET_RNDIS_HOST
CONFIG_USB_NET_CDC_NCM
CONFIG_USB_NET_HUAWEI_CDC_NCM
CONFIG_USB_NET_CDC_MBIM
Please relate to the Techship product specific web pages for vendor specific Linux integration guides.
Below is a selection of kernel commits relating to cellular module support in Linux kernels:
qmi_wwan: Add support for Fibocom NL678 series
qmi_wwan: Added support for Telit LN940 series
qmi_wwan: Added support for Fibocom NL668 series
USB: serial: option: add support for GosunCn ME3630 RNDIS mode
USB: serial: option: add support for Simcom SIM7500/SIM7600 RNDIS mode
USB: serial: option: add Simcom SIM7500/SIM7600 (MBIM mode)
USB: serial: option: add Fibocom NL678 series
USB: serial: option: add Telit LN940 series
USB: serial: option: add Fibocom NL668 series
USB: serial: option: add GosunCn ZTE WeLink ME3630
qmi_wwan: apply SET_DTR quirk to the SIMCOM shared device ID
If you use any of the listed cellular modules, drivers and specified USB modes in the commits above, ensure that your kernel version already include the patch or apply it to your build.
How can we establish data connection for cellular modules in Windows 8 and Windows 10 systems?
Microsoft Windows desktop versions starting from Windows 8 and newer have built in data connection manager for WWAN, Wifi etc. that can be used to configure, control and establish the data connection of cellular module that support MBIM interface, which most cellular modules do.
The connection managers settings and controls can be found and accessed on Windows desktop start menu through the network icon (see picture).
The Cellular tab can be found in Windows system settings and if needed the connection APN details can be manually entered through "Advanced options".
How to set up a simple data connection over Qualcomm QMI interface using libqmi and driver qmi_wwan in Linux?
Several cellular modules based on Qualcomm chipsets implements the Qualcomm MSM QMI RMNET Interface.
There is a open source Linux in-kernel driver supporting this interface called qmi_wwan. The helper library libqmi can be used to communicate with the cellular devices over the interface and do cellular module configurations to control and trigger the data connection over the cellular network.
Install the libqmi Linux library using e.g. your OS package manager like apt etc.
(Check out the official libqmi page here: https://www.freedesktop.org/wiki/Software/libqmi/)
Please be aware that libqmi is a 3rd party software not distributed by the chipset or module vendors. So full compatibility on all available commands should not be expected.
There are Qualcomm chipset standard QMI commands and in addition vendors specific custom QMI commands not supported by all manufacturers, but still available in libqmi. There are also new QMI commands not supported in older chipsets and vice versa, old QMI commands no longer supported in new chipset series.
Verify that you have the Linux in-kernel qmi_wwan driver installed and loaded for the cellular modules QMI interface endpoint over USB:
lsusb -t
Can look like this:
...
|__ Port 1: Dev 3, If 2, Class=Vendor Specific Class, Driver=qmi_wwan, 480M
...
If the driver is not loaded correctly, please verify that the cellular module is set to expose QMI RMNET network interface endpoint in its configuration. How to do so can often be found in AT commands guides, Linux implementation guides and similar from the cellular module vendors.
Libqmi library include a command line tool qmicli that can be used in a more convenient way communicate directly with the module over QMI interface for testing, scripting and troubleshooting.
The qmicli help will output information about all commands available:
qmicli --help-all
The qmi_wwan network control interfaces for modules are usually named like cdc-wdm# under /dev/ path.
Use the attribute --device or -d to specify it for qmicli in your command execution:
qmicli --device=/dev/cdc-wdm0
qmicli -d /dev/cdc-wdm0
In order to ease usage of the QMI interface and handle parallell command requests, libqmi include a proxy function to handle it correctly on the QMI interface, To use it, make sure to have the the attribute present in the qmicli command:
-p
--device-open-proxy
Example commands on how to communicate
Request module manufacturer:
qmicli -p -d /dev/cdc-wdm0 --dms-get-manufacturer
Get module model:
qmicli -p -d /dev/cdc-wdm0 --dms-get-model
Get firmware version:
qmicli -p -d /dev/cdc-wdm0 --dms-get-revision
Get module IDs (IMEI etc.):
qmicli -p -d /dev/cdc-wdm0 --dms-get-ids
Get SIM card status:
qmicli -p -d /dev/cdc-wdm0 --uim-get-card-status
The script qmi-network can be used to establish a simple data connection, it will automatically try to verify the IP framing type match them correctly between qmi_wwan driver and module (Raw-IP vs. 802.3 IP framing).
Create a config file containing your network operator APN details and if needed, the username and password.
Save it e.g. in the default location /etc/qmi-network.conf
The parameter --profile=[PATH] can be used to define the path to config when executing qmi-network.
Example config file content: APN details and enabling of proxy usage.
Add the username and password lines if it is needed for your APN:
APN=my-network-operators-apn
APN_USER=my-apn-username
APN_PASS=my-apn-password
PROXY=yes
Once the APN information is saved, you can start the network connection with the command:
qmi-network /dev/cdc-wdm0 start
The name of the related network interface in the Linux system can be acquired with the command:
qmicli -p -d /dev/cdc-wdm0 --get-wwan-iface
Once you see "Network started successfully" message, you can send a DHCP request on the network interface.
Please note that not all DHCP clients in Linux can handle Raw-IP format but udhcpc support it.
udhcpc -q -f -i wwan0
The IP information from the cellular network can also be acquired and set manually to the network interface by the user or scripting, the correct address details can be acquired from the cellular module over QMI with command:
qmicli -p -d /dev/cdc-wdm0 --wds-get-current-settings
If the connection was successfully set up and established, you now have a data connection. Ping request to a remote server using the cellular network interface can prove this:
ping -I wwan0 8.8.8.8
The ifconfig Linux tool can show the current details for the network interface:
ifconfig wwan0
To bring down and stop the cellular network connection, please use the stop command bellow:
qmi-network /dev/cdc-wdm0 stop
The ModemManager tool for Linux is based on libqmi. NetworkManager and ModemManager . Please note however that these two tools expect the cellular module interfaces to only be used by them so if you manually want to use the libqmi library or AT commands interfaces, please turn off/disable ModemManager and NetworkManager first.
The libqmi is a generic open source library for Linux systems and QMI protocol from Qualcomm, therefor there are several commands only working on selected devices and not necessarily on supported in the specific device you use, resulting in an error message.
We cannot acquire an DHCP address over qmi_wwan driver when using Raspbian Linux OS?
Raspbian uses dhcpd to probe all available network interfaces found in the system, which is problematic for the qmi_wwan driver interface, if it is done before being configured properly when using cellular modules supporting only Raw-IP.
This can be avoided by setting dhcpd to deny the related cellular module network interface (most often named wwan0 by the system).
Add to the /etc/dhcpcd.conf file in Raspbian the following line (in the end):
denyinterfaces wwan0
Now, restart the system (preferably re-power it) so cellular module fully restarts also.
At next startup, the settings should be applied and you can now configure and use the qmi interface as described in some of the others faq's, found on the Techship webpage.
Why should we use USB3 instead of USB2 as host system data interface if the cellular module can support both?
Cellular modules supporting higher data throughput rates like LTE Advanced, category 6 and above (300Mbps downlink and 50Mbps uplink) often support both USB3 interface as well as USB2 interface towards the host system.
It is recommended to implement and use the USB3 data interface rather than the older USB2 interface on these modules between host system and the cellular module. This because USB3 can support around 10 times higher data throughput rate compared to USB2 and avoid a possible bottleneck / limitation in the data interface between host and cellular module.
If a miniPCIe based cellular module implementing USB3 are used, please verify that conflicts don't occur towards your hosts miniPCIe socket, as the USB3 interface is not implemented by default in the miniPCIe standard and therefore signal collisions can happen between USB3 pins and PCIe data interface pins situated on same locations. Refer to the cellular module hardware guides and host system hardware guides to verify this.
How can I enable DC voltage output for active GPS/GNSS antennas on modules that support this feature?
The 3 volt DC Low Noise Amplifier voltage supply from the cellular module can be enabled according to AT commands bellow:
For Sierra Wireless EM/MC74 series:
AT!ENTERCND="A710"
AT+WANT=1
For Sierra Wireless MC73 series:
AT!ENTERCND="A710"
AT+WANTGNSSPWR=1
For Simcom SIM7100, SIM7500, SIM7600 and SIM7600 -H series:
AT+CVAUXV=3050
AT+CVAUXS=1
The Sierra Wireless EM74-series modules cannot get a fix on GPS/Satellite navigation system even if I have connected the antenna correctly?
The Sierra Wireless EM74-series modules can be adjusted to read the GPS signals from either the AUX/Diversity antenna connector or the dedicated GPS antenna connector on the module.
This can be configured through the AT!CUSTOM commands:
GPSSEL
0 = Use dedicated GPS antenna (Default)
1 = Use shared GPS/Rx diversity antenna
For example like this:
AT!ENTERCND="A710"
AT!CUSTOM="GPSSEL",0
AT!RESET
Now the dedicated GPS antenna port on module will be used for satellite location services.
Windows system show multiple network devices for my Sierra Wireless MC74-, EM74-series cellular module
Sending the following AT Commands to the modules MODEM Serial COM port interface will change the USB profile for exposed interfaces towards host system.
Setting for DIAG, NMEA, MODEM, RMNET0 interface: (Linux - QMI with one network interface)
1. AT!ENTERCND=”A710”
2. AT!USBCOMP=1,1,10D
3. AT!RESET
Setting for DIAG, NMEA, MODEM, RMNET0, RMNET1 interface: (Linux - QMI with two network interfaces)
1. AT!ENTERCND=”A710”
2. AT!USBCOMP=1,1,50D
3. AT!RESET
Setting for DIAG, NMEA, MODEM, MBIM interface: (Enabling MBIM mode supported by Windows 8 & 10)
1. AT!ENTERCND=”A710”
2. AT!USBCOMP=1,1,100D
3. AT!RESET
Beware to not disable the MODEM serial interface, leaving module inaccessible for AT commands.
How can we use Sierra Wireless MC/EM74 and EM75 series cellular modules in Linux with the MBIM control and data interface?
The Sierra Wireless MC/EM74 and EM75 series cellular modules can expose the Mobile Broadband Interface Model (MBIM) Interface.
There is a open source Linux in-kernel driver supporting MBIM interface and it is called cdc_mbim. The library libmbim can be used to communicate with the cellular devices over the interface and do necessary configurations to trigger the data connection over the cellular network.
First install the libmbim and libmbim-utils Linux library using your system package manager like apt etc. (more details about libmbim here: https://www.freedesktop.org/wiki/Software/libmbim/)
Check with lsusb that you have the Sierra wireless module loaded, vid:pid value 1199:9091 or 1199:9071 should be present.
lsusb
Bus 002 Device 003: ID 1199:9091 Sierra Wireless, Inc.
or:
Bus 002 Device 003: ID 1199:9071 Sierra Wireless, Inc.
Verify with lsusb -t that the Linux in-kernel cdc_mbim driver is correctly loaded for the cellular module. It can look e.g. like this:
lsusb -t
...
|__ Port 3: Dev 3, If 0, Class=Vendor Specific Class, Driver=qcserial, 5000M
|__ Port 3: Dev 3, If 2, Class=Vendor Specific Class, Driver=qcserial, 5000M
|__ Port 3: Dev 3, If 3, Class=Vendor Specific Class, Driver=qcserial, 5000M
|__ Port 3: Dev 3, If 12, Class=Communications, Driver=cdc_mbim, 5000M
|__ Port 3: Dev 3, If 13, Class=CDC Data, Driver=cdc_mbim, 5000M
...
If this is not the case, you will have to change USB end points the cellular module exposes. This can be done through AT commands sent to the modules serial interfaces accepting AT commands. Usually located at dev/ttyUSB2 if the qcserial drivers are correctly loaded.
Sierra Wireless EM74x0, MC74x0 series module:
AT!ENTERCND=”A710”
AT!USBCOMP=1,1,100D
AT!RESET
(See test command AT!USBCOMP=? for full usage description)
Sierra Wireless EM75xx, EM74x1, MC74x1 series module:
AT!ENTERCND=”A710”
AT!USBCOMP=1,3,100D
AT!RESET
(See test command AT!USBCOMP=? for full usage description)
(Applications like Minicom or Picocom can be used to send AT commands over the serial interfaces)
Should you have no serial interface loaded, it is because the driver has not been loaded for the USB serial endpoints due to missing vid:pid values in the qcserial driver. You can then use the commands bellow to temporarily load the driver for new vid:pid combinations.
modprobe qcserial
EM75 series:
echo 1199 9091 > /sys/bus/usb-serial/drivers/qcserial/new_id
MC74xx/EM74xx series:
echo 1199 9071 > /sys/bus/usb-serial/drivers/qcserial/new_id
When you have changed the cellular modules USB endpoint configuration to expose MBIM interface and module have restarted, then you can use libmbim's command line interface to control the cellular module.
Using libmbim with the command line interface mbimcli:
List all available options for mbimcli:
mbimcli --help-all
Check version
mbimcli --version
The cellular modules mbim interface is usually named cdc-wdm* among the devices. For mbimcli this is defined by --device=/dev/cdc-wdm0 parameter. You should also use the proxy function to enable parallel commands to be sent to module even if the interface already is in use by a data connection. This is done by including --device-open-proxy or -p in every mbimcli requst to module.
Command example to query device capabilities and information (firmware & IMEI code etc.):
mbimcli --device=/dev/cdc-wdm0 --device-open-proxy --query-device-caps
The libmbim tool: mbim-network can be used to establish a simple data connection.
First create a config file containing your network operators APN details. Save it in the default location where mbim-network searches for the file: /etc/mbim-network.conf .
The parameter --profile=[PATH] can be used to alter this path when executing mbim-network.
Save the APN details, (and username, password and authentication type if necessary) into the configuration file:
APN=
APN_USER=
APN_PASS=
APN_AUTH=
PROXY=yes
How to start a data connection after configuration file is in place:
Enter SIM PIN (if necessary for SIM card):
mbimcli -d /dev/cdc-wdm0 -p --enter-pin=1234
Start the mbim data connection with command bellow, if successful it will print "Network started successfully"
mbim-network /dev/cdc-wdm0 start
You can now execute the mbim-set-ip script (download found bellow related to this FAQ) with sufficient system privileges:
./mbim-set-ip /dev/cdc-wdm0 wwan0
This script will collect the network interface IP configurations from the cellular module over MBIM interface using mbimcli, parse them and apply them to the network interface in Linux, this because DHCP requests are generally not supported over MBIM interfaces.
Once you have started the data connection and set the details with the mbim-set-ip script you should be able to ping the data connection:
IPv4 ping: (only supported if IPv4 address was acquired from cellular module)
ping -4 -I wwan0 8.8.8.8
ping -4 -I wwan0 google.com
IP v6 ping: (only supported if IPv6 address was acquired from cellular module)
ping -6 -I wwan0 2001:4860:4860::8888
ping -6 -I wwan0 google.com
The cellular data connection can be disconnected by commands:
Stop mbim data connection:
mbim-network /dev/cdc-wdm0 stop
Set network interface down:
ip link set wwan0 down
Other useful commands:
Query device capabilities and information (firmware & IMEI code etc.):
mbimcli -d /dev/cdc-wdm0 -p --query-device-caps
Query SIM card information:
mbimcli -d /dev/cdc-wdm0 -p --query-subscriber-ready-status
Query network registration state:
mbimcli -d /dev/cdc-wdm0 -p --query-registration-state
Query connection ip information:
mbimcli -d /dev/cdc-wdm0 -p --query-ip-configuration=0
Test setup:
Software: Ubuntu server 18.04 LTS with kernel 4.15.0-23-generic and mbimcli 1.14.2
Hardware: Sierra Wireless EM7565 with firmware SWI9X50C_01.07.00.00 on Aaeon UP Squared host board with 10703 M.2 to USB 3.0 Adapter.
How do I set USB-interface modes on my Sierra Wireless module?
Sierra Wireless modules can expose different USB interfaces, like MBIM, MODEM, NMEA or RMNET. The different interfaces can be combined or used individually, depending on the specific need for your project.
Here is how to set the different USB interface configurations. (In this example we use a Sierra Wireless EM7421, but it will be similar for many other Sierra Wireless modules.)
Make sure you get an OK after every AT command sent.
We start by typing:
AT
To be able to view what we just sent to the module we type:
ATE1
Since this feature is password protected we need to type:
AT!ENTERCND=”A710”
To see what USB interface we are currently using, just type AT!USBCOMP? and you should receive something like this:
Config Index: 1
Config Type: 3 (Generic)
Interface bitmask: 0000010D (diag,nmea,modem,rmnet0)
OK
Config index is what the type applies to and should be set to 1.
The config type means what USB composition is used. For this module USBIF-MBIM (1), PCIE USBIF (2), Legacy Generic (3) or RNDIS (4) are available.
Interface bitmask is the part where we see what USB interface our module is set to.
Now, to see what our USB interface options are we need to type:
AT!USBCOMP=?
Here we can see that for this module we have the following options:
DIAG - 0x00000001
NMEA - 0x00000004
MODEM - 0x00000008
RMNET0 - 0x00000100
MBIM - 0x00001000
These values are hexadecimal. So, for an example, if we wanted to activate all the options (DIAG, NMEA, MODEM and MBIM) we just add these values together.
If we open the Windows Calculator in Programmer mode (and make sure you have “HEX” selected!) and add all the values together like this 1 + 4+ 8 +1000, we will get 100D. (Please note, RMNET0 and MBIM cannot be used simultaneous for this module. Refer to the manual of your specific module to when setting up the USB interface.)
If we then send the following AT command to the module, we will set it to DIAG, NMEA, MODEM and MBIM:
AT!USBCOMP=1,3,100D
Again, type AT!USBCOMP? to confirm we have the new settings selected, it should look like this:
Config Index: 1
Config Type: 3 (Generic)
Interface bitmask: 0000100D (diag,nmea,modem,mbim)
OK
For further information please take a look at the AT command user guide available on the product's specific page under "technical documentation", which is available for download once logged in.
The Sierra Wireless EM73, EM74 and EM75 series M.2 modules are not detected in the host system when used with the M.2 to USB adapter board? (USBM2, USB3M2)
Sierra Wireless EM73, EM74 and EM75 series M.2 modules DPR pin 25 compatibility with Bplus M.2 key B to USB adapters.
When using the Bplus USB3M2 and USBM2 adapter boards you will need to change the state of the jumper JP1 on the USB adapter board. This controls the Dynamic Power Control (DPR) pin in the M.2 socket to the cellular module.
Please remove the pin jumper piece and leave all 3 pins not connected / floating. This will allow the module to operate normally.
After changing this jumper state and powering on the module and adapter board, you should see the module appear and boot up normally in the host system device.
For further details, please relate to the Sierra Wireless related product technical specification as well as the assembly guide for the adapter boards.
How to collect initial diagnostics data for Sierra Wireless EM/MC74xx and EM75xx series cellular modules when requesting technical support?
In order to troubleshoot and solve a technical problem, we ask you to please provide information about your system and logs from the related module when creating a technical support ticket.
Please provide a problem description of what exact problem is and in what precise situations it is present.
Describe the host system:
-Hardware (system board, peripherals...)
-Operating system and detailed versions (E.g. Windows, Linux dist, release, kernel...)
-Drivers and driver versions
Identify the precise details of cellular module found on label:
-Model
-SKU/BOM or P/N code
(For RMA returns the IMEI number is required also)
If you are running on a Linux based system, please capture the terminal logs bellow:
uname -a
lsusb
lsusb -t
ifconfig -a
ls -l /dev/serial/by-id
ls -l /sys/bus/usb-serial/devices
dmesg
The log output requested from the commands bellow, can be acquired from the module by accessing one of the USB enumerated serial (COM) interfaces accepting AT commands. (In Windows this is generally found listed as a Modem interface or AT commands serial interface in the device manager and in Linux it is usually found on /dev/ttyUSB2 interface). Send the following commands to the module and capture the text output and include them when creating the the technical support ticket.
Sierra Wireless :
AT
ATE1
ATI
AT!ENTERCND="A710"
AT!PRIID?
AT!IMPREF?
AT!IMAGE?
AT+CFUN?
AT!UIMS?
AT+CPIN?
AT+CREG?
AT+CGREG?
AT+CEREG?
AT+COPS?
AT!GSTATUS?
AT+CGDCONT?
AT$QCPDPP?
AT+CGATT?
AT+CGACT?
AT+CGCONTRDP
AT+CGPADDR
AT!BAND?
AT!BAND=?
AT!LTEINFO?
AT!LTECA?
AT!RXDEN?
AT!PCINFO?
AT!USBCOMP?
AT!USBCOMP=?
AT!SELRAT?
AT!SELRAT=?
AT!USBSPEED?
AT!PCOFFEN?
AT!CUSTOM?
AT!CUSTOM=?
AT!PCTEMP?
AT!PCVOLT?
AT!PCVOLTLIMITS?
AT!HWID?
AT!ERR
AT!BCFWUPDATESTATUS
AT!TMSTATUS?
The support ticket can be created after login at: https://techship.com/technical_support/
How do I select specific bands on my Sierra Wireless module?
The AT command AT!BAND can be used to select what specific GSM and LTE bands that you want to be active on your module.
If you are experiencing poor DL or UL speeds, one solution may be to only select the bands that you know are available, which can increase the transfer speeds.
(Please note that the following examples are when using a Sierra Wireless EM7421)
First, see that you get an “OK” with command:
AT
Then, to make sure you can see what command has been sent, type:
ATE1
Since what we are about to do is password protected, we need to type:
AT!ENTERCND="A710"
When entering AT!BAND? it will return a reply looking like (for example):
AT!BAND?
Index, Name, GW Band Mask L Band Mask 1 TDS Band Mask L Band Mask 2 L Band Mask 3 L Band Mask 4
00, All Bands 000200000C400000 000007A0880800C5 0000000000000000 0000000000000000 0000000000000000 0000000000000000
OK
The "00" is referring to the selected preset, "All Bands" to the preset name, "000200000C400000" to GSM bands and "000007A0880800C5" to selected LTE bands in hexadecimal.
To get information on all available bands, we need to type:
AT!BAND=?
Starting at the GSM band (at chapter "AT!BAND - Select/return frequency band set" in the AT command reference manual) we can see that 000200000C400000 corresponds to “0002000000000000 - B8 (900) + 0000000008000000 - B6 (800) + 0000000004000000 - B5 (850) + 0000000000400000 - B1 (2100) = 000200000C400000 (All GSM Bands)”
Now for LTE, which is probably what is a little tricky to understand. Let’s start the Windows Calculator and change it to Programmer mode. If you copy the "000007A0880800C5" into the calculator window it should convert it to binary.
HEX: 0000 07A0 8808 00C5
BIN: 0111 1010 0000 1000 1000 0000 1000 0000 0000 1100 0101
If you look at the line of BIN above you can see what bands are active (1) and which are not (0). Looking from right to left, the first bit corresponds to B1, second bit to B2, third bit B3, and so on…
HEX: 0000 07A0 8808 00C5
BIN: 0111 1010 0000 1000 1000 0000 1000 0000 0000 1100 0101
Selected bands: B1+B3+B7+B8+B20+B28+B32+B38+B40+B41+B42+B43
So if I, for example, only want the GSM bands "GSM 900MHz + GSM 850MHz", and LTE bands "B3, B4, B7, B28" we enter the following:
AT!BAND= 11,"Custom User Preset",0002000004000000,000000000800004C
Now we have created a new preset slot “11”, a name for the preset “Custom User Preset” and selected bands for GSM “GSM 900MHz + GSM 850MHz” and also selected bands for LTE "B3, B4, B7, B28", see explanation below:
Bands: B3, B4, B7, B28
Binary: 1000 0000 0000 0000 0000 0100 1100
Hexadecimal: 800 004C
Now we want to make sure our newly created preset is selected, so we type:
AT!BAND=11
And finally to check that we have selected the preset we again type AT!BAND? and should get the following response:
Index, Name, GW Band Mask L Band Mask 1 TDS Band Mask L Band Mask 2 L Band Mask 3 L Band Mask 4
11, Custom User Preset 0002000004000000 000000000800004C 0000000000000000 0000000000000000 0000000000000000 000000000000000
OK
For further information please take a look at the AT command user guide available on the product's specific page under "technical documentation", which is available for download once logged in.
How do we use the GNSS location tracking (GPS) functionality of the Sierra Wireless EM/MC74** series cellular modules?
The Sierra Wireless EM/MC74 series modules include a GNSS tracker that can be enabled to acquire location data.
Pre-requirements:
EM/MC74 series module:
Connected to host system with sufficient power supply and correct drivers installed in the host system.
GNSS/GPS antenna:
The GNSS antenna should have clear sky view without obstacles in the way and be connected to the cellular modules antenna connector marked "GPS". If a passive antenna is used the antenna cable should be kept very short (preferably bellow 1 meter) as GNSS signals are very weak and not placed near interference sources.
Details of the available AT commands related to GNSS functionality are described in the "Sierra Wireless EM74XX and MC74XX AT Command Reference Manual" chapter 7: GNSS Commands.
The serial interface accepting AT commands is usually found under /dev/ttyUSB2 in Linux systems and under Modem tab in Windows Device manager (opening the device properties and Modem tab will show its given COM port number in the Windows system).
A basic GNSS tracking session outputting the location data on the NMEA serial interface can be started with the following AT command
AT!GPSTRACK=fixType,maxTime,maxDist,fixCount,fixRate
Bellow command starts a standalone tracking with 255 seconds timeout value, 250 meter accuracy, continuous tracking, fixed data output rate every second on the NMEA virtual serial interface:
AT!GPSTRACK=1,255,250,1000,1
Depending on if an GNSS antenna with or without low noise amplifier (active/passive antenna) are used, the AT+WANT command can adjust if the antenna power supply of 3 volt should be enabled or disabled.
Passive GPS antenna:
AT+WANT=0
Active GPS antenna:
AT+WANT=1
A GNSS tracking session can be interrupted and ended with the command:
AT!GPSEND
In Linux applications it is recommended to use the Sierra Wireless provided GobiNet and GobiSerial drivers for optimal performance. If the Linux in-kernel drivers are used, it might be needed also to send the bellow sentence to the ttyUSBx that represents the NMEA serial interface in order to activate the data stream on the interface:
$GPS_START
The antenna connector used by the GPS tracker can be either through the dedicated GNSS port or it can be combined with the Rx Diversity antenna located on the AUX marked connector. This is selected by changing a parameter with the AT!CUSTOM command:
To select usage of the dedicated GNSS antenna connector on cellular module, execute:
AT!ENTERCND="A710"
AT!CUSTOM="GPSSEL",0
This will select usage of the dedicated GPS antenna slot (Default value)
For further details on how to configure the GPS for different application and scenarios, such as using Assisted GPS, or changing output formats etc. please relate to the AT commands reference.
How-to automatically set up and maintain the cellular data connection in headless Raspberry Pi OS / Raspbian systems?
The open-source tools NetworkManager and ModemManager can be uesd to establish, control and maintain a cellular connection even if the enironment and antenna RF circumstances vary.
First ensure that the cellular module have been detected in the Raspbian system, and that Linux in-kernel driver alternatives have been loaded correctly for the USB interfaces.
This can be verified through different tools like lsusb and usb-devices, and by checking the dmesg log.
Look at the Driver output, serial interface typically use option or qcserial driver and the network interfaces typically bind to the qmi_wwan or cdc_mbim drivers.
The in-kernel drivers, as well as NetworkManager and ModemManager tools are continously improved, due to the rapid progress in wirelless connectivity. Therefore it is recommended to use fairly recent Linux kernel and distribution versions, which is more likely to have device support out of the box.
lsusb
Bus 001 Device 012: ID 1e0e:9001 Qualcomm / Option
lsusb -t
|__ Port 4: Dev 12, If 1, Class=Vendor Specific Class, Driver=option, 480M
|__ Port 4: Dev 12, If 4, Class=Vendor Specific Class, Driver=option, 480M
|__ Port 4: Dev 12, If 2, Class=Vendor Specific Class, Driver=option, 480M
|__ Port 4: Dev 12, If 0, Class=Vendor Specific Class, Driver=option, 480M
|__ Port 4: Dev 12, If 5, Class=Vendor Specific Class, Driver=qmi_wwan, 480M
|__ Port 4: Dev 12, If 3, Class=Vendor Specific Class, Driver=option, 480M
usb-devices
T: Bus=01 Lev=02 Prnt=02 Port=03 Cnt=02 Dev#= 12 Spd=480 MxCh= 0
D: Ver= 2.00 Cls=00(>ifc ) Sub=00 Prot=00 MxPS=64 #Cfgs= 1
P: Vendor=1e0e ProdID=9001 Rev=03.18
S: Manufacturer=SimTech, Incorporated
S: Product=SimTech, Incorporated
S: SerialNumber=0123456789ABCDEF
C: #Ifs= 6 Cfg#= 1 Atr=a0 MxPwr=500mA
I: If#=0x0 Alt= 0 #EPs= 2 Cls=ff(vend.) Sub=ff Prot=ff Driver=option
I: If#=0x1 Alt= 0 #EPs= 3 Cls=ff(vend.) Sub=00 Prot=00 Driver=option
I: If#=0x2 Alt= 0 #EPs= 3 Cls=ff(vend.) Sub=00 Prot=00 Driver=option
I: If#=0x3 Alt= 0 #EPs= 3 Cls=ff(vend.) Sub=00 Prot=00 Driver=option
I: If#=0x4 Alt= 0 #EPs= 3 Cls=ff(vend.) Sub=00 Prot=00 Driver=option
I: If#=0x5 Alt= 0 #EPs= 3 Cls=ff(vend.) Sub=ff Prot=ff Driver=qmi_wwan
If drivers aren't loaded for all the USB interfaces, please see the following general FAQ on kernel configs and patches for cellular modules.
FAQ: Common Linux kernel modules and configs necessary for communicating with cellular modules over USB interface
On Raspberry Pi OS / Raspbian uses dhcpcd to configure networks, this causes problems for several cellular devices, so it is recommended to exclude the cellular modules wwan interfaces, see following FAQ for how-to details:
FAQ: We cannot acquire an DHCP address over qmi_wwan driver when using Raspbian Linux OS?
Update the system and install NetworkManager and ModemManager:
apt update
apt upgrade
apt install network-manager modemmanager libmbim-utils libmbim-proxy libqmi-utils libqmi-proxy
Once they are installed and services running, set the cellular module to be a managed interface for NetworkManager.
(The control interface is typically called cdc-wdm0 for cellular devices using qmi_wwan / cdc_mbim driver.)
nmcli device set cdc-wdm0 managed true
Now you can go ahead and establish the cellular data connection as described in FAQ below:
FAQ: Using NetworkManager and ModemManager in Linux to automatically establish and maintain a connection
How-to change the cellular modulesUSB composition mode to Mobile Broadband Interface Model (MBIM) used by Windows 8 and 10 systems for controlling and establishing data connectivity through the built-in connection manager in Windows?
This is done by sending a set of AT commands to the cellular modules Modem or AT serial interface found in Windows Device Manager. Please see list below for associated AT commands.
(For additional details, refer to the product specific software, ports, and AT commands guides found on the Techship product web pages under technical documentation tab).
After the AT commands have been received by the module and has restarted, the USB interface endpoint composition should have changed to include MBIM interface as well.
You can find the correct Serial COM port number by checking Windows Device Manager, under the Modems drop down -> (right click and see properties for selected COM port info) or under the Ports (COM & LPT) drop down.
Vendor specific commands to use:
Sierra Wireless EM74x0, MC74x0 series module:
AT!ENTERCND=”A710”
AT!USBCOMP=1,1,100D
AT!RESET
(See test command AT!USBCOMP=? for full usage description)
Sierra Wireless EM75xx, EM74x1, MC74x1 series module:
AT!ENTERCND=”A710”
AT!USBCOMP=1,3,100D
AT!RESET
(See test command AT!USBCOMP=? for full usage description)
Sierra Wireless EM73xx, MC73xx series module:
AT!ENTERCND=”A710”
AT!UDUSBCOMP=8
AT!RESET
Simcom SIM7100, SIM7500 and SIM7600 series modules:
AT+CUSBPIDSWITCH=9003,1,1
AT+CRESET
ZTE Welink ME3630 series:
AT+ZSWITCH=8
AT+ZRST
Telit LE910C1 and LE910C4 series:
AT#USBCFG=2
AT#REBOOT
Telit LM940 and LM940A11:
AT#USBCFG=2
AT#REBOOT
Telit LM960 and LM960A18:
AT#USBCFG=2
AT#REBOOT
Telit LE910 V2 series:
AT#USBCFG=3
AT#REBOOT
On Huawei and Telit LN94x series modules the USB mode changing is done automatically by the modules Windows drivers based on current Windows version.
Please be aware that some USB mode configurations do not include any serial interfaces, making it impossible to revert the changes using AT commands.
How-to guide: How can we control, configure and establish a simple data connection for a cellular module in Linux systems using the open source ModemManager tool for modem control and connection management.
ModemManager is a open source tool for Linux that can be used to communicate with cellular devices for configuration, status check, connection triggering etc. It is capable of communicate over several types of device control channels such as QMI/RMNET, MBIM, MODEM / AT command etc.
It is hosted by the Freedesktop.org community and driven by Aleksander Morgado and other contributors, please visit https://www.freedesktop.org/wiki/Software/ModemManager/ for latest information, source code, API reference manuals, debugging tips, contribution, mailing list etc.
Keep in mind that ModemManager is not directly developed or driven by cellular device vendors and the compatibility cannot be guaranteed for the specific device you aim to use. Some vendors contribute with code to make their devices fully compatible, while others don't. However many cellular devices can be set to expose standardized types of USB network interface and control channel such as MBIM interface by USB-IF or the Qualcomm proprietary interface QMI that ModemManager will try to identify, and often manage to work successfully with.
Before continuing with ModemManager, a good thing to ensure is that you have common Linux driver modules available in your kernel build.
You can compare your own systems kernel config with the ones listed in the following FAQ:
Common Linux kernel modules and configs necessary for communicating with cellular modules over USB interface
Selections of these are commonly used by cellular devices and need to be available in order to have device drivers correctly loaded when devices are detected.
Start by installing ModemManager and its dependencies to your Linux system.
You can build it from source code release tarball found at freedesktop.org (install instructions included in the archive)
If you have a package manager in your Linux distribution, it can usually be installed through them also.
E.g. on Ubuntu using apt to install it and related dependencies:
apt install modemmanager libmbim-utils libqmi-utils
Keep in mind that Linux distributions sometimes rely on fairly old releases in their repositories and the development of ModemManager, libqmi and libmbim are on-going continuously. So is also the development of the cellular devices when the cellular technologies evolve. It is therefore recommended that you have a fairly recent version of ModemManager, libqmi and libmbim running in your system as well as when it comes to kernel version since the driver modules sometimes acquire patch fixes to be compatible with new chipset features etc.
Check Freedesktop.org pages for details on the latest ModemManager, NetworkManager, Libqmi and Libmbim releases.
Once you've installed ModemManager and rebooted your system, the service daemon should be running already in background.
Mmcli is the related command line interface tool which can be used to interact with ModemManager daemon through command line commands.
Check the version by command:
mmcli -V
<< mmcli 1.13.0
<< Copyright (2011 - 2020) Aleksander Morgado
<< License GPLv2+: GNU GPL version 2 or later
<< This is free software: you are free to change and redistribute it.
<< There is NO WARRANTY, to the extent permitted by law.
Print general mmcli help message:
mmcli --help
ModemManager normally listen, probes and detects cellular devices automatically when operating correctly but a forced scan can be triggered with command:
mmcli --scan-modems
<< successfully requested to scan devices
To list detected cellular devices use command:
mmcli --list-modems
<< /org/freedesktop/ModemManager1/Modem/0 [Sierra Wireless, Incorporated] MC7455
Here ModemManager have detected a Sierra Wireless cellular device and it has here been given the the identifier number 0 by ModemManager.
To acquire more device information and status use the --modem command and identifier value.
mmcli --modem=0
<< -----------------------------
<< General | dbus path: /org/freedesktop/ModemManager1/Modem/0
<< | device id: 3a2f5fad8e91dbf417694f23165017c1f8a6e061
<< -----------------------------
<< Hardware | manufacturer: Sierra Wireless, Incorporated
<< | model: MC7455
<< | firmware revision: SWI9X30C_02.32.11.00 r8042 CARMD-EV-FRMWR2 2019/05/15 21:52:20
<< | carrier config: default
<< | h/w revision: 1.0
<< | supported: gsm-umts, lte
<< | current: gsm-umts, lte
<< | equipment id: 359072066171840
<< -----------------------------
<< System | device: /sys/devices/pci0000:00/0000:00:14.0/usb3/3-2
<< | drivers: qcserial, qmi_wwan
<< | plugin: sierra
<< | primary port: cdc-wdm0
<< | ports: cdc-wdm0 (qmi), wwan1 (net), ttyUSB2 (at), wwan0 (net),
<< | cdc-wdm1 (qmi), ttyUSB1 (gps), ttyUSB0 (qcdm)
<< -----------------------------
<< Status | lock: sim-pin
<< | unlock retries: sim-pin (3), sim-puk (10), sim-pin2 (0), sim-puk2 (10)
<< | state: locked
<< | power state: on
<< | signal quality: 0% (cached)
<< -----------------------------
<< Modes | supported: allowed: 3g; preferred: none
<< | allowed: 4g; preferred: none
<< | allowed: 3g, 4g; preferred: 4g
<< | allowed: 3g, 4g; preferred: 3g
<< | current: allowed: 3g, 4g; preferred: 4g
<< -----------------------------
<< Bands | supported: utran-1, utran-3, utran-4, utran-5, utran-8, utran-2,
<< | eutran-1, eutran-2, eutran-3, eutran-4, eutran-5, eutran-7, eutran-8,
<< | eutran-12, eutran-13, eutran-20, eutran-25, eutran-26, eutran-29,
<< | eutran-30, eutran-41
<< | current: utran-1, utran-3, utran-4, utran-5, utran-8, utran-2,
<< | eutran-1, eutran-2, eutran-3, eutran-4, eutran-5, eutran-7, eutran-8,
<< | eutran-12, eutran-13, eutran-20, eutran-25, eutran-26, eutran-29,
<< | eutran-30, eutran-41
<< -----------------------------
<< IP | supported: ipv4, ipv6, ipv4v6
<< -----------------------------
<< SIM | dbus path: /org/freedesktop/ModemManager1/SIM/0
A detailed summary of device status, configs and system drivers, paths and IDs are returned.
Currently the device status indicates that inserted SIM card is PIN locked, so a unlock by --pin command is necessary:
mmcli --modem=0 --sim=0 --pin=****
<< successfully sent PIN code to the SIM
Now we can change device state to enabled using command:
mmcli --modem=0 --enable
<< successfully enabled the modem
if we're check device status again we can see that device:
mmcli --modem=0
…
<< --------------------------------
<< Status | lock: sim-puk2
<< | unlock retries: sim-pin (3), sim-puk (10), sim-pin2 (0), sim-puk2 (10)
<< | state: registered
<< | power state: on
<< | access tech: lte
<< | signal quality: 96% (recent)
…
<< 3GPP | imei: 359072066171840
<< | operator id: 24002
<< | operator name: 3
<< | registration: home
<< --------------------------------
<< 3GPP EPS | ue mode of operation: csps-2
<< --------------------------------
<< SIM | dbus path: /org/freedesktop/ModemManager1/SIM/0
The status output shows that devices is registered in network using LTE technology with a good signal strength.
It is now time to activate the data connection with --simple-connect command.
ModemManager will tie the data bearer for our given subscription APN to the qmi_wwan network interface, typically named wwan0 (unless renamed by Linux distribution or user)
Fill in the details as below but for your modem number, subscription APN and the IP type it can work with (ipv4 / ipv6 ipv4v6)
mmcli -m 0 --simple-connect='apn=data.tre.se,ip-type=ipv4v6'
<< successfully connected the modem
if we check modem status again we can see that a bearer have been established.
mmcli --modem=0
…
<< --------------------------------
<< Bearer | dbus path: /org/freedesktop/ModemManager1/Bearer/0
…
The bearer have got identifier number 0 so we can request more details for it to acquire the IP details:
mmcli --modem=0 --bearer=0
<< ------------------------------------
<< General | dbus path: /org/freedesktop/ModemManager1/Bearer/0
<< | type: default
<< ------------------------------------
<< Status | connected: yes
<< | suspended: no
<< | interface: wwan1
<< | ip timeout: 20
<< ------------------------------------
<< Properties | apn: data.tre.se
<< | roaming: allowed
<< | ip type: ipv4v6
<< ------------------------------------
<< IPv4 configuration | method: static
<< | address: 2.68.206.100
<< | prefix: 29
<< | gateway: 2.68.206.101
<< | dns: 80.251.201.177, 80.251.201.178
<< | mtu: 1500
<< ------------------------------------
<< IPv6 configuration | method: static
<< | address: 2a02:aa1:1010:b6bb:6d12:d0dc:978e:3982
<< | prefix: 64
<< | gateway: 2a02:aa1:1010:b6bb:21ea:c721:62c3:9760
<< | dns: 2a02:aa0::55, 2a02:aa0::56
<< | mtu: 1500
<< ------------------------------------
<< Statistics | duration: 450
<< | bytes rx: 6693
<< | attempts: 1
<< | total-duration: 450
<< | total-bytes rx: 6693
From here we can see the IP details we've been assigned by the cellular network.
ModemManager does not assign IPv4 address details to the cellular modules network interface in Linux by itself.
When ModemManager is used in conjunction with NetworkManager and the cellular connection is managed by it, then the IPv4 address details will be collected by NetworkManager through ModemManager and automatically assigned to network interface when connection is established.
If the system does not implement NetworkManager, then the IP and routing configuration needs to be handled by user software/scripting.
Example:
Enable network interface in Linux:
ip link set wwan0 up
Set the IPv4 address acquired from bearer information above, the CIDR subnet mask can always be set to 32:
ip addr add 2.68.206.100/32 dev wwan0
Disable ARP:
ip link set dev wwan0 arp off
Set MTU value acquired from network:
ip link set dev wwan0 mtu 1500
Add a default or other type of route to the cellular network device (e.g. with a metric to set which route to prefer)
ip route add default dev wwan0 metric 200
Add the DNS servers reported by cellular network or use other public/desired ones.
DNS server addresses are handled in different ways depending on the Linux distribution and network manager used. Therefore please refer to related dist documentation for best practice to add / maintain DNS server addresses in your specific system.
sh -c "echo 'nameserver 80.251.201.177' >> /etc/resolv.conf"
sh -c "echo 'nameserver 80.251.201.178' >> /etc/resolv.conf"
We should now have a network interface passing data successfully, we can try it out by doing ping requests:
IPv4 data:
ping -4 -c 4 -I wwan0 8.8.8.8
PING 8.8.8.8 (8.8.8.8) from 2.68.206.100 wwan0: 56(84) bytes of data.
64 bytes from 8.8.8.8: icmp_seq=1 ttl=57 time=50.8 ms
64 bytes from 8.8.8.8: icmp_seq=2 ttl=57 time=48.8 ms
64 bytes from 8.8.8.8: icmp_seq=3 ttl=57 time=24.0 ms
64 bytes from 8.8.8.8: icmp_seq=4 ttl=57 time=44.8 ms
--- 8.8.8.8 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3005ms
rtt min/avg/max/mdev = 23.979/42.115/50.840/10.694 ms
IPv6 data:
ping -6 -c 4 -I wwan0 2600::
PING 2600::(2600::) from 2a02:aa1:1010:b6bb:8962:7405:b81c:7627 wwan0: 56 data bytes
64 bytes from 2600::: icmp_seq=1 ttl=47 time=179 ms
64 bytes from 2600::: icmp_seq=2 ttl=47 time=176 ms
64 bytes from 2600::: icmp_seq=3 ttl=47 time=175 ms
64 bytes from 2600::: icmp_seq=4 ttl=47 time=177 ms
--- 2600:: ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3004ms
rtt min/avg/max/mdev = 175.411/176.935/179.268/1.446 ms
How to use NetworkManager and ModemManager in Linux to automatically establish a cellular data connection and configure IP details?
Using NetworkManager and ModemManager in Linux to automatically establish a connection and configure IP details
In this FAQ we will show how to set up NetworkManager to automatically configure, establish the cellular data connection in your system.
NetworkManager and ModemManager are open source tool for Linux to manage several types of networks and interfaces such as ethernet, wifi, etc. It can also manage cellular WWAN interfaces through the ModemManager tool.
It is hosted by the Freedesktop.org community and driven by Aleksander Morgado and other contributors. please visit https://wiki.gnome.org/Projects/NetworkManager and https://www.freedesktop.org/wiki/Software/ModemManager/ for latest information, source code, API reference manuals, debugging tips, contribution, mailing list etc.
ModemManager is capable of communicating over several types of device control channels such as QMI/RMNET, MBIM, MODEM / AT command etc. But support for vendor proprietary or out-of-kernel drivers are none or very limited. Such drivers are gobinet, simcom_wwan and other drivers provided by the vendors directly.
Many Linux distributions have NetworkManager and ModemManager pre-installed or they can typically easily be installed through the systems package manager.
In Ubuntu for example apt can install it for you by command if not already installed:
apt install network-manager
Check with commands below that you have both tools installed in system and their versions.
NetworkManager -V
ModemManager -V
ModemManager (and NetworkManager) are continuously developed for better compatibility with the cellular devices, therefore it is recommend to use a recent version of the tools and in case of problem situations, evaluate the latest versions from source and check the mailing list archives for possible discussions on the problem experienced.
Keep in mind that NetworkManager and ModemManager projects are not directly developed or driven by the cellular device vendors and the compatibility with the device you aim to use can be limited. Some vendors contribute with code to make their devices fully compatible, while others don't. Many cellular devices can be set to expose standardized types of USB network interface and control channel such as MBIM interface by USB-IF or the Qualcomm proprietary interface QMI that ModemManager will try to identify, and often manage to work successfully with but there are exceptions also.
Both NetworkManager and ModemManager have command line interfaces (nmcli and mmcli respectively) where you can interact with the management tools.
Relate to the following FAQ if you want more details for using ModemManager only to configure and control the cellular device but manually establish, maintain the connection and network interface IP address details.
How-to guide: control and set up a data connection in Linux using ModemManager as connection manager?
Have ModemManager list all the cellular device it has detected. Here we use the Alcatel IK41 series with MBIM interface in this example:
mmcli --list-modems
/org/freedesktop/ModemManager1/Modem/0 [Alcatel] Mobilebroadband
General details and status of them modem can be listed with "--modem" option.
mmcli --modem=0
-----------------------------
General | dbus path: /org/freedesktop/ModemManager1/Modem/0
| device id: 998e478c5b14c75e16bffe6abaacabef22fb2f5b
-----------------------------
Hardware | manufacturer: Alcatel
| model: Mobilebroadband
| firmware revision: MPSS.JO.2.0.2.c1.7-00004-9607_
| carrier config: default
| h/w revision: 0
| supported: gsm-umts, lte
| current: gsm-umts, lte
| equipment id:
-----------------------------
System | device: /sys/devices/pci0000:00/0000:00:14.0/usb3/3-1
| drivers: option1, cdc_mbim
| plugin: Generic
| primary port: cdc-wdm0
| ports: cdc-wdm0 (mbim), ttyUSB0 (at), ttyUSB2 (at), wwan0 (net),
| ttyUSB1 (qcdm)
-----------------------------
Status | lock: sim-pin
| unlock retries: sim-pin (3)
| state: locked
| power state: on
| signal quality: 0% (cached)
-----------------------------
Modes | supported: allowed: 2g; preferred: none
| allowed: 3g; preferred: none
| allowed: 4g; preferred: none
| allowed: 2g, 3g; preferred: 3g
| allowed: 2g, 3g; preferred: 2g
| allowed: 2g, 4g; preferred: 4g
| allowed: 2g, 4g; preferred: 2g
| allowed: 3g, 4g; preferred: 3g
| allowed: 3g, 4g; preferred: 4g
| allowed: 2g, 3g, 4g; preferred: 4g
| allowed: 2g, 3g, 4g; preferred: 3g
| allowed: 2g, 3g, 4g; preferred: 2g
| current: allowed: 2g, 3g, 4g; preferred: 2g
-----------------------------
Bands | supported: egsm, dcs, pcs, g850, utran-1, utran-8, eutran-1, eutran-3,
| eutran-7, eutran-8, eutran-20, eutran-28
| current: egsm, dcs, pcs, g850, utran-1, utran-8, eutran-1, eutran-3,
| eutran-7, eutran-8, eutran-20, eutran-28
-----------------------------
IP | supported: ipv4, ipv6, ipv4v6
-----------------------------
SIM | dbus path: /org/freedesktop/ModemManager1/SIM/0
Check that the cellular device is managed by NetworkManager by not having state "unmanaged" listed for it.
nmcli device status
DEVICE TYPE STATE CONNECTION
cdc-wdm0 gsm disconnected --
enp3s0 ethernet unmanaged --
lo loopback unmanaged --
Now you should create a connection profile in NetworkManager for your specific network carrier and SIM card with the "nmcli connection add" command:
For example:
nmcli connection add type gsm ifname '*' con-name '3-sweden' apn 'data.tre.se' connection.autoconnect yes gsm.pin 0000
- type is gsm for all typical cellular connections unless it is of cdma type.
- ifname is the control interface name, in this case cdc-wdm0, wildcard can be used also to have it autoselect.
- con-name is the profile name you want to give it.
- apn is provided by your network carrier and tells the modem what attach point it should use for the data connection.
- connection.autoconnect set to yes will make NetworkManager always try to auto connect and maintain this profile connection.
- gsm.pin lets you provide a pin code for the SIM card, that NetworkManager will try to use if PIN check is enabled for SIM card.
There are several additional commands and attributes available such as username and password settings for the APNs etc. Refer to the NetworkManager help and manual pages for full details on the commands.
If successful you should receive a reply similar to this one:
Connection '3-sweden' (cad6fcbf-2cb1-4796-b7e6-67b9f9635aef) successfully added.
You can check the status now by command:
nmcli device status
DEVICE TYPE STATE CONNECTION
cdc-wdm0 gsm connected 3-sweden
enp3s0 ethernet unmanaged --
lo loopback unmanaged --
Where connected should be listed as state if the connection establishment was successful.
If the connection is not successful or you want more details about the device and connection you can check commands:
You can list the current status with command:
nmcli radio
WIFI-HW WIFI WWAN-HW WWAN
enabled enabled enabled enabled
nmcli device show cdc-wdm
GENERAL.DEVICE: cdc-wdm0
GENERAL.TYPE: gsm
GENERAL.HWADDR: (unknown)
GENERAL.MTU: 1500
GENERAL.STATE: 100 (connected)
GENERAL.CONNECTION: 3-sweden
GENERAL.CON-PATH: /org/freedesktop/NetworkManager/ActiveConnection/18
IP4.ADDRESS[1]: 2.68.73.130/30
IP4.GATEWAY: 2.68.73.129
IP4.ROUTE[1]: dst = 2.68.73.128/30, nh = 0.0.0.0, mt = 700
IP4.ROUTE[2]: dst = 0.0.0.0/0, nh = 2.68.73.129, mt = 700
IP4.DNS[1]: 80.251.201.177
IP4.DNS[2]: 80.251.201.178
IP6.ADDRESS[1]: 2a02:aa1:1017:6d11:1060:3dff:feac:e92f/64
IP6.ADDRESS[2]: 2a02:aa1:1017:6d11:6474:7254:7b72:eb09/64
IP6.GATEWAY: 2a02:aa1:1017:6d11:21e6:9049:6cfb:8ac3
IP6.ROUTE[1]: dst = ff00::/8, nh = ::, mt = 256, table=255
IP6.ROUTE[2]: dst = 2a02:aa1:1017:6d11::/64, nh = ::, mt = 700
IP6.ROUTE[3]: dst = ::/0, nh = fe80::21e6:9049:6cfb:8ac3, mt = 1024
IP6.ROUTE[4]: dst = 2a02:aa1:1017:6d11::/64, nh = ::, mt = 256
IP6.ROUTE[5]: dst = ::/0, nh = 2a02:aa1:1017:6d11:21e6:9049:6cfb:8ac3, mt = 700
IP6.DNS[1]: 2a02:aa0::55
IP6.DNS[2]: 2a02:aa0::56
nmcli connection show
NAME UUID TYPE DEVICE
3-sweden e946017f-2e9c-477b-89ad-4c31e7331d65 gsm cdc-wdm0
Ifconfig should now show the related IP address details already set to the network interface by NetworkManager:
ifconfig
wwan0: flags=4291 mtu 1500
inet 2.68.73.130 netmask 255.255.255.252 broadcast 2.68.73.131
inet6 2a02:aa1:1017:6d11:6474:7254:7b72:eb09 prefixlen 64 scopeid 0x0
inet6 2a02:aa1:1017:6d11:1060:3dff:feac:e92f prefixlen 64 scopeid 0x0
ether 12:60:3d:ac:e9:2f txqueuelen 1000 (Ethernet)
RX packets 186 bytes 10886 (10.8 KB)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 5 bytes 480 (480.0 B)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
You can now for example test the connection over the network interface by sending ping requests.
Testing IPV4 connection:
ping -4 -I wwan0 8.8.8.8
PING 8.8.8.8 (8.8.8.8) from 2.68.73.130 wwan0: 56(84) bytes of data.
64 bytes from 8.8.8.8: icmp_seq=1 ttl=118 time=55.8 ms
64 bytes from 8.8.8.8: icmp_seq=2 ttl=118 time=45.4 ms
64 bytes from 8.8.8.8: icmp_seq=3 ttl=118 time=42.9 ms
--- 8.8.8.8 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2003ms
rtt min/avg/max/mdev = 42.918/48.053/55.845/5.601 ms
Testing IPV6 connection: (if your cellular device, network subscription and APN supports it)
ping -6 -I wwan0 2600::
PING 2600::(2600::) from 2a02:aa1:1017:6d11:1060:3dff:feac:e92f wwan0: 56 data bytes
64 bytes from 2600::: icmp_seq=1 ttl=46 time=172 ms
64 bytes from 2600::: icmp_seq=2 ttl=46 time=171 ms
64 bytes from 2600::: icmp_seq=3 ttl=46 time=169 ms
64 bytes from 2600::: icmp_seq=4 ttl=46 time=168 ms
--- 2600:: ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3004ms
rtt min/avg/max/mdev = 167.921/170.037/172.272/1.651 ms
The connection is successful and automatic reconnect is working when testing to unplug and plug in the device again.
For additional configurations, commands and available attributes, please relate to the manual pages for NetworkManager and ModemManager.
Troubleshooting logs:
NetworkManager and ModemManager write log messages to the Linux syslog file /var/log/syslog.
In case of problems with establishing a cellular data connection, please copy the logfile after the problem have appeared and include it in a Techship technical support ticket.
In some situations more detailed debug logs are needed, these can be acquired by changing the log levels for NetworkManager and ModemManager and run them manually.
To capture debug logs, please first disable and stop the normal services:
systemctl stop NetworkManager ModemManager
systemctl disable NetworkManager ModemManager
Run them manually in background with debug level set:
/usr/sbin/ModemManager --log-level=DEBUG &> /dev/null &
/usr/sbin/NetworkManager --log-level=DEBUG &
Reproduce the cellular data connection problem.
Once completed, kill the processes:
killall -TERM NetworkManager ModemManager
Copy the relate messages in syslog to a mm-nm-sys-debug.log logfile:
grep -E 'ModemManager|NetworkManager|systemd|dbus-daemon|dhclient' /var/log/syslog > mm-nm-sys-debug.log
Activate and start the services again:
systemctl enable NetworkManager ModemManager
systemctl start NetworkManager ModemManager
Include the mm-nm-sys-debug.log in a technical support ticket at Techship.com where you describe the issue in details and include other relevant information also such as kernel version, ModemManager and NetworkManager versions, dmesg log etc.