Sierra Wireless EM7511 embedded module is approved by AT&T for the FirstNet™ public safety network.
The EM7511 module offers unprecedented LTE speeds, bandwidth, and network performance on the M.2 form factor, enabling secure and reliable public safety communications on the FirstNet Band 14 spectrum.
Leveraging LTE-LAA and CBRS unlicensed bands and carrier aggregation, this LTE-Advanced Pro Cat-12 embedded module delivers up to 600Mbps downlink speed and 150Mbps uplink speed, with automatic fallback to 3G networks and integrated GNSS receiver (GPS, GLONASS, BeiDou, and Galileo satellite systems supported).
EM7511 is ideal for public safety, industrial M2M, and mobile computing solutions.
Technical product specification for the Sierra Wireless AirPrime EM7511 module.
This guide compares and describes the hardware differences between the Sierra Wireless AirPrime EM cellular modules based on the M.2 key B form factor.
This document describes proprietary and protected AT commands available for Sierra Wireless AirPrime® EM75xx - EM74x1 - MC74x1 Series intelligent embedded modules.
This guide describes the USB interface mapping in host system for the Sierra Wireless EM75** series cellular modules
This technical note describes the thermal mitigation for Sierra Wireless AirPrime EM75 series.
Antenna Basics Guide for Sierra Wireless AirPrime Products IoT Applications
This guide describes differences in how the the single Rmnet USB endpoint can be used to separate and support multiple PDN connections for Sierra Wireless modules based on Qualcomm chipset MDM9x06, MDM9x07, MDM9x50 with the GobiNet and GobiSerial drivers.
This guide describes the process of acquiring regulatory and operator required certificates in North America
Reach Letter for Sierra Wireless AirPrime products from March 2019
NCC for EM7511
FCC grant for Sierra Wireless EM7511
IC Certificate for Sierra Wireless EM7511
Microsoft Windows desktop driver installer for the Sierra Wireless AirPrime EM/MC series cellular modules.
Microsoft Windows desktop driver installer application for Sierra Wireless AirPrime EM/MC series.
This zip archive contains the Sierra Wireless Linux QMI SDK files:
Linux QMI SDK Full Version
Linux QMI SDK Lite Version
Linux QMI SDK Customer Release Note
Sierra Linux QMI drivers
Linux QMI SDK Application Developers Guide
Linux QMI Drivers - Customer Release Notes
This ZIP archive contains the Sierra Wireless Linux QMI drivers with manual and release notes.
In the Application Developers Guide you find instructions on how to install the drivers.
Linux QMI GobiNet and GobiSerial Drivers - Customer Release Notes
Linux QMI SDK Application Developers Guide
Sierra Linux QMI drivers
This archive contains the Sierra Wireless EM7511 Windows firmware update package for
Verizon operator (PRI: 002.039) as well as the firmware binary files for update on Linux based platforms. Please relate to the release notes prior to update regarding update instructions.
This archive contains the Sierra Wireless EM7511 Windows firmware update package for
T-Mobile operator (PRI: 002.003) as well as the firmware binary files for update on Linux based platforms. Please relate to the release notes prior to update regarding update instructions.
This archive contains the Sierra Wireless EM7511 Windows firmware update package for Generic PRI as well as the firmware binary files for update on Linux based platforms. Please relate to the release notes prior to update regarding update instructions and changes.
This archive contains the Sierra Wireless EM7511 Windows firmware update package for Generic PRI and network operators not specifically mentioned. Package contains also the firmware binary files for update on Linux based platforms. Please relate to the release notes prior to update regarding update instructions.
This archive contains the Sierra Wireless EM7511 Windows firmware update package for Generic PRI and network operators not specifically mentioned. Package contains also the firmware binary files for update on Linux based platforms. Please relate to the release notes prior to update regarding update instructions.
This archive contains the Sierra Wireless EM7511 Windows firmware update package for AT&T operator PRI as well as the firmware binary files for update on Linux based platforms. Please relate to the release notes prior to update regarding update instructions
This archive contains the Sierra Wireless EM7511 Windows firmware update package for
Verizon operator PRI (002.015_001) as well as the firmware binary files for update on Linux based platforms. Please relate to the release notes prior to update regarding update instructions.
This archive contains the Sierra Wireless EM7511 Windows firmware update package for AT&T operator PRI (002.008_004) as well as the firmware binary files for update on Linux based platforms. Please relate to the release notes prior to update regarding update instructions.
This application note describes the requirement for configuring RF band mask correctly when using the Generic firmware 01.08.04.00 002.012_000 (Generic PRI) with US Cellular network operator on the Sierra Wireless EM75 series modules.
This archive contains the Sierra Wireless EM7511 Windows firmware update package for Generic PRI. Package contains also the firmware binary files for update on Linux based platforms. Please relate to the release notes prior to update regarding update instructions.
How-to automatically set up and maintain the cellular data connection in headless Raspberry Pi OS / Raspbian systems?
The open-source tools NetworkManager and ModemManager can be uesd to establish, control and maintain a cellular connection even if the enironment and antenna RF circumstances vary.
First ensure that the cellular module have been detected in the Raspbian system, and that Linux in-kernel driver alternatives have been loaded correctly for the USB interfaces.
This can be verified through different tools like lsusb and usb-devices, and by checking the dmesg log.
Look at the Driver output, serial interface typically use option or qcserial driver and the network interfaces typically bind to the qmi_wwan or cdc_mbim drivers.
The in-kernel drivers, as well as NetworkManager and ModemManager tools are continously improved, due to the rapid progress in wirelless connectivity. Therefore it is recommended to use fairly recent Linux kernel and distribution versions, which is more likely to have device support out of the box.
lsusb
Bus 001 Device 012: ID 1e0e:9001 Qualcomm / Option
lsusb -t
|__ Port 4: Dev 12, If 1, Class=Vendor Specific Class, Driver=option, 480M
|__ Port 4: Dev 12, If 4, Class=Vendor Specific Class, Driver=option, 480M
|__ Port 4: Dev 12, If 2, Class=Vendor Specific Class, Driver=option, 480M
|__ Port 4: Dev 12, If 0, Class=Vendor Specific Class, Driver=option, 480M
|__ Port 4: Dev 12, If 5, Class=Vendor Specific Class, Driver=qmi_wwan, 480M
|__ Port 4: Dev 12, If 3, Class=Vendor Specific Class, Driver=option, 480M
usb-devices
T: Bus=01 Lev=02 Prnt=02 Port=03 Cnt=02 Dev#= 12 Spd=480 MxCh= 0
D: Ver= 2.00 Cls=00(>ifc ) Sub=00 Prot=00 MxPS=64 #Cfgs= 1
P: Vendor=1e0e ProdID=9001 Rev=03.18
S: Manufacturer=SimTech, Incorporated
S: Product=SimTech, Incorporated
S: SerialNumber=0123456789ABCDEF
C: #Ifs= 6 Cfg#= 1 Atr=a0 MxPwr=500mA
I: If#=0x0 Alt= 0 #EPs= 2 Cls=ff(vend.) Sub=ff Prot=ff Driver=option
I: If#=0x1 Alt= 0 #EPs= 3 Cls=ff(vend.) Sub=00 Prot=00 Driver=option
I: If#=0x2 Alt= 0 #EPs= 3 Cls=ff(vend.) Sub=00 Prot=00 Driver=option
I: If#=0x3 Alt= 0 #EPs= 3 Cls=ff(vend.) Sub=00 Prot=00 Driver=option
I: If#=0x4 Alt= 0 #EPs= 3 Cls=ff(vend.) Sub=00 Prot=00 Driver=option
I: If#=0x5 Alt= 0 #EPs= 3 Cls=ff(vend.) Sub=ff Prot=ff Driver=qmi_wwan
If drivers aren't loaded for all the USB interfaces, please see the following general FAQ on kernel configs and patches for cellular modules.
FAQ: Common Linux kernel modules and configs necessary for communicating with cellular modules over USB interface
On Raspberry Pi OS / Raspbian uses dhcpcd to configure networks, this causes problems for several cellular devices, so it is recommended to exclude the cellular modules wwan interfaces, see following FAQ for how-to details:
FAQ: We cannot acquire an DHCP address over qmi_wwan driver when using Raspbian Linux OS?
Update the system and install NetworkManager and ModemManager:
apt update
apt upgrade
apt install network-manager modemmanager libmbim-utils libmbim-proxy libqmi-utils libqmi-proxy
Once they are installed and services running, set the cellular module to be a managed interface for NetworkManager.
(The control interface is typically called cdc-wdm0 for cellular devices using qmi_wwan / cdc_mbim driver.)
nmcli device set cdc-wdm0 managed true
Now you can go ahead and establish the cellular data connection as described in FAQ below:
FAQ: Using NetworkManager and ModemManager in Linux to automatically establish and maintain a connection
How to collect initial diagnostics data for Sierra Wireless EM/MC74xx and EM75xx series cellular modules when requesting technical support?
In order to troubleshoot and solve a technical problem, we ask you to please provide information about your system and logs from the related module when creating a technical support ticket.
Please provide a problem description of what exact problem is and in what precise situations it is present.
Describe the host system:
-Hardware (system board, peripherals...)
-Operating system and detailed versions (E.g. Windows, Linux dist, release, kernel...)
-Drivers and driver versions
Identify the precise details of cellular module found on label:
-Model
-SKU/BOM or P/N code
(For RMA returns the IMEI number is required also)
If you are running on a Linux based system, please capture the terminal logs bellow:
uname -a
lsusb
lsusb -t
ifconfig -a
ls -l /dev/serial/by-id
ls -l /sys/bus/usb-serial/devices
dmesg
The log output requested from the commands bellow, can be acquired from the module by accessing one of the USB enumerated serial (COM) interfaces accepting AT commands. (In Windows this is generally found listed as a Modem interface or AT commands serial interface in the device manager and in Linux it is usually found on /dev/ttyUSB2 interface). Send the following commands to the module and capture the text output and include them when creating the the technical support ticket.
Sierra Wireless :
AT
ATE1
ATI
AT!ENTERCND="A710"
AT!PRIID?
AT!IMPREF?
AT!IMAGE?
AT+CFUN?
AT!UIMS?
AT+CPIN?
AT+CREG?
AT+CGREG?
AT+CEREG?
AT+COPS?
AT!GSTATUS?
AT+CGDCONT?
AT$QCPDPP?
AT+CGATT?
AT+CGACT?
AT+CGCONTRDP
AT+CGPADDR
AT!BAND?
AT!BAND=?
AT!LTEINFO?
AT!LTECA?
AT!RXDEN?
AT!PCINFO?
AT!USBCOMP?
AT!USBCOMP=?
AT!SELRAT?
AT!SELRAT=?
AT!USBSPEED?
AT!PCOFFEN?
AT!CUSTOM?
AT!CUSTOM=?
AT!PCTEMP?
AT!PCVOLT?
AT!PCVOLTLIMITS?
AT!HWID?
AT!ERR
AT!BCFWUPDATESTATUS
AT!TMSTATUS?
The support ticket can be created after login at: https://techship.com/technical_support/
How to use NetworkManager and ModemManager in Linux to automatically establish and maintain a cellular data connection?
Using NetworkManager and ModemManager in Linux to automatically establish and maintain the cellular data connection
In this FAQ we will show how to set up NetworkManager to automatically configure, establish and maintain the cellular data connection in your system.
NetworkManager and ModemManager are open source tool for Linux to manage several types of networks and interfaces such as ethernet, wifi, etc. It can also manage cellular WWAN interfaces through the ModemManager tool.
It is hosted by the Freedesktop.org community and driven by Aleksander Morgado and other contributors. please visit https://wiki.gnome.org/Projects/NetworkManager and https://www.freedesktop.org/wiki/Software/ModemManager/ for latest information, source code, API reference manuals, debugging tips, contribution, mailing list etc.
ModemManager is capable of communicating over several types of device control channels such as QMI/RMNET, MBIM, MODEM / AT command etc. But support for vendor proprietary or out-of-kernel drivers are limited. Such drivers are gobinet, simcom_wwan and other drivers provided by the vendors directly.
Many Linux distributions have NetworkManager and ModemManager pre-installed or they can typically easily be installed through the systems package manager.
In Ubuntu for example apt can install it for you by command:
apt install network-manager
Check with commands below that you have both tools installed in system and their versions.
NetworkManager -V
ModemManager -V
ModemManager (and NetworkManager) are continuously developed for better compatibility with the cellular devices, therefore it is recommend to use a recent version of the tools and in case of problem situations, evaluate the latest versions from source and check the mailing list archives for possible discussions on the problem experienced.
Keep in mind that NetworkManager and ModemManager projects are not directly developed or driven by the cellular device vendors and the compatibility with the device you aim to use can be limited. Some vendors contribute with code to make their devices fully compatible, while others don't. Many cellular devices can be set to expose standardized types of USB network interface and control channel such as MBIM interface by USB-IF or the Qualcomm proprietary interface QMI that ModemManager will try to identify, and often manage to work successfully with but there are exceptions also.
Both NetworkManager and ModemManager have command line interfaces (nmcli and mmcli respectively) where you can interact with the management tools.
Relate to the following FAQ if you want more details for using ModemManager only to configure and control the cellular device but manually establish, maintain the connection and network interface IP address details.
How-to guide: control and set up a data connection in Linux using ModemManager as connection manager?
Have ModemManager list all the cellular device it has detected. Here we use the Alcatel IK41 series with MBIM interface in this example:
mmcli --list-modems
/org/freedesktop/ModemManager1/Modem/0 [Alcatel] Mobilebroadband
General details and status of them modem can be listed with "--modem" option.
mmcli --modem=0
-----------------------------
General | dbus path: /org/freedesktop/ModemManager1/Modem/0
| device id: 998e478c5b14c75e16bffe6abaacabef22fb2f5b
-----------------------------
Hardware | manufacturer: Alcatel
| model: Mobilebroadband
| firmware revision: MPSS.JO.2.0.2.c1.7-00004-9607_
| carrier config: default
| h/w revision: 0
| supported: gsm-umts, lte
| current: gsm-umts, lte
| equipment id:
-----------------------------
System | device: /sys/devices/pci0000:00/0000:00:14.0/usb3/3-1
| drivers: option1, cdc_mbim
| plugin: Generic
| primary port: cdc-wdm0
| ports: cdc-wdm0 (mbim), ttyUSB0 (at), ttyUSB2 (at), wwan0 (net),
| ttyUSB1 (qcdm)
-----------------------------
Status | lock: sim-pin
| unlock retries: sim-pin (3)
| state: locked
| power state: on
| signal quality: 0% (cached)
-----------------------------
Modes | supported: allowed: 2g; preferred: none
| allowed: 3g; preferred: none
| allowed: 4g; preferred: none
| allowed: 2g, 3g; preferred: 3g
| allowed: 2g, 3g; preferred: 2g
| allowed: 2g, 4g; preferred: 4g
| allowed: 2g, 4g; preferred: 2g
| allowed: 3g, 4g; preferred: 3g
| allowed: 3g, 4g; preferred: 4g
| allowed: 2g, 3g, 4g; preferred: 4g
| allowed: 2g, 3g, 4g; preferred: 3g
| allowed: 2g, 3g, 4g; preferred: 2g
| current: allowed: 2g, 3g, 4g; preferred: 2g
-----------------------------
Bands | supported: egsm, dcs, pcs, g850, utran-1, utran-8, eutran-1, eutran-3,
| eutran-7, eutran-8, eutran-20, eutran-28
| current: egsm, dcs, pcs, g850, utran-1, utran-8, eutran-1, eutran-3,
| eutran-7, eutran-8, eutran-20, eutran-28
-----------------------------
IP | supported: ipv4, ipv6, ipv4v6
-----------------------------
SIM | dbus path: /org/freedesktop/ModemManager1/SIM/0
Check that the cellular device is managed by NetworkManager by not having state "unmanaged" listed for it.
nmcli device status
DEVICE TYPE STATE CONNECTION
cdc-wdm0 gsm disconnected --
enp3s0 ethernet unmanaged --
lo loopback unmanaged --
Now you should create a connection profile in NetworkManager for your specific network carrier and SIM card with the "nmcli connection add" command:
For example:
nmcli connection add type gsm ifname '*' con-name '3-sweden' apn 'data.tre.se' connection.autoconnect yes gsm.pin 0000
- type is gsm for all typical cellular connections unless it is of cdma type.
- ifname is the control interface name, in this case cdc-wdm0, wildcard can be used also to have it autoselect.
- con-name is the profile name you want to give it.
- apn is provided by your network carrier and tells the modem what attach point it should use for the data connection.
- connection.autoconnect set to yes will make NetworkManager always try to auto connect and maintain this profile connection.
- gsm.pin lets you provide a pin code for the SIM card, that NetworkManager will try to use if PIN check is enabled for SIM card.
There are several additional commands and attributes available such as username and password settings for the APNs etc. Refer to the NetworkManager help and manual pages for full details on the commands.
If successful you should receive a reply similar to this one:
Connection '3-sweden' (cad6fcbf-2cb1-4796-b7e6-67b9f9635aef) successfully added.
You can check the status now by command:
nmcli device status
DEVICE TYPE STATE CONNECTION
cdc-wdm0 gsm connected 3-sweden
enp3s0 ethernet unmanaged --
lo loopback unmanaged --
Where connected should be listed as state if the connection establishment was successful.
If the connection is not successful or you want more details about the device and connection you can check commands:
You can list the current status with command:
nmcli radio
WIFI-HW WIFI WWAN-HW WWAN
enabled enabled enabled enabled
nmcli device show cdc-wdm
GENERAL.DEVICE: cdc-wdm0
GENERAL.TYPE: gsm
GENERAL.HWADDR: (unknown)
GENERAL.MTU: 1500
GENERAL.STATE: 100 (connected)
GENERAL.CONNECTION: 3-sweden
GENERAL.CON-PATH: /org/freedesktop/NetworkManager/ActiveConnection/18
IP4.ADDRESS[1]: 2.68.73.130/30
IP4.GATEWAY: 2.68.73.129
IP4.ROUTE[1]: dst = 2.68.73.128/30, nh = 0.0.0.0, mt = 700
IP4.ROUTE[2]: dst = 0.0.0.0/0, nh = 2.68.73.129, mt = 700
IP4.DNS[1]: 80.251.201.177
IP4.DNS[2]: 80.251.201.178
IP6.ADDRESS[1]: 2a02:aa1:1017:6d11:1060:3dff:feac:e92f/64
IP6.ADDRESS[2]: 2a02:aa1:1017:6d11:6474:7254:7b72:eb09/64
IP6.GATEWAY: 2a02:aa1:1017:6d11:21e6:9049:6cfb:8ac3
IP6.ROUTE[1]: dst = ff00::/8, nh = ::, mt = 256, table=255
IP6.ROUTE[2]: dst = 2a02:aa1:1017:6d11::/64, nh = ::, mt = 700
IP6.ROUTE[3]: dst = ::/0, nh = fe80::21e6:9049:6cfb:8ac3, mt = 1024
IP6.ROUTE[4]: dst = 2a02:aa1:1017:6d11::/64, nh = ::, mt = 256
IP6.ROUTE[5]: dst = ::/0, nh = 2a02:aa1:1017:6d11:21e6:9049:6cfb:8ac3, mt = 700
IP6.DNS[1]: 2a02:aa0::55
IP6.DNS[2]: 2a02:aa0::56
nmcli connection show
NAME UUID TYPE DEVICE
3-sweden e946017f-2e9c-477b-89ad-4c31e7331d65 gsm cdc-wdm0
Ifconfig should now show the related IP address details already set to the network interface by NetworkManager:
ifconfig
wwan0: flags=4291 mtu 1500
inet 2.68.73.130 netmask 255.255.255.252 broadcast 2.68.73.131
inet6 2a02:aa1:1017:6d11:6474:7254:7b72:eb09 prefixlen 64 scopeid 0x0
inet6 2a02:aa1:1017:6d11:1060:3dff:feac:e92f prefixlen 64 scopeid 0x0
ether 12:60:3d:ac:e9:2f txqueuelen 1000 (Ethernet)
RX packets 186 bytes 10886 (10.8 KB)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 5 bytes 480 (480.0 B)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
You can now for example test the connection over the network interface by sending ping requests.
Testing IPV4 connection:
ping -4 -I wwan0 8.8.8.8
PING 8.8.8.8 (8.8.8.8) from 2.68.73.130 wwan0: 56(84) bytes of data.
64 bytes from 8.8.8.8: icmp_seq=1 ttl=118 time=55.8 ms
64 bytes from 8.8.8.8: icmp_seq=2 ttl=118 time=45.4 ms
64 bytes from 8.8.8.8: icmp_seq=3 ttl=118 time=42.9 ms
--- 8.8.8.8 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2003ms
rtt min/avg/max/mdev = 42.918/48.053/55.845/5.601 ms
Testing IPV6 connection: (if your cellular device, network subscription and APN supports it)
ping -6 -I wwan0 2600::
PING 2600::(2600::) from 2a02:aa1:1017:6d11:1060:3dff:feac:e92f wwan0: 56 data bytes
64 bytes from 2600::: icmp_seq=1 ttl=46 time=172 ms
64 bytes from 2600::: icmp_seq=2 ttl=46 time=171 ms
64 bytes from 2600::: icmp_seq=3 ttl=46 time=169 ms
64 bytes from 2600::: icmp_seq=4 ttl=46 time=168 ms
--- 2600:: ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3004ms
rtt min/avg/max/mdev = 167.921/170.037/172.272/1.651 ms
The connection is successful and automatic reconnect is working when testing to unplug and plug in the device again.
For additional configurations, commands and available attributes, please relate to the manual pages for NetworkManager and ModemManager.
How-to guide: How can we control, configure and establish a simple data connection for a cellular module in Linux systems using the open source ModemManager tool for modem control and connection management.
ModemManager is a open source tool for Linux that can be used to communicate with cellular devices for configuration, status check, connection triggering etc. It is capable of communicate over several types of device control channels such as QMI/RMNET, MBIM, MODEM / AT command etc.
It is hosted by the Freedesktop.org community and driven by Aleksander Morgado and other contributors, please visit https://www.freedesktop.org/wiki/Software/ModemManager/ for latest information, source code, API reference manuals, debugging tips, contribution, mailing list etc.
Keep in mind that ModemManager is not directly developed or driven by cellular device vendors and the compatibility cannot be guaranteed for the specific device you aim to use. Some vendors contribute with code to make their devices fully compatible, while others don't. However many cellular devices can be set to expose standardized types of USB network interface and control channel such as MBIM interface by USB-IF or the Qualcomm proprietary interface QMI that ModemManager will try to identify, and often manage to work successfully with.
Before continuing with ModemManager, a good thing to ensure is that you have common Linux driver modules available in your kernel build.
You can compare your own systems kernel config with the ones listed in the following FAQ:
Common Linux kernel modules and configs necessary for communicating with cellular modules over USB interface
Selections of these are commonly used by cellular devices and need to be available in order to have device drivers correctly loaded when devices are detected.
Start by installing ModemManager and its dependencies to your Linux system.
You can build it from source code release tarball found at freedesktop.org (install instructions included in the archive)
If you have a package manager in your Linux distribution, it can usually be installed through them also.
E.g. on Ubuntu using apt to install it and related dependencies:
apt install modemmanager libmbim-utils libqmi-utils
Keep in mind that Linux distributions sometimes rely on fairly old releases in their repositories and the development of ModemManager, libqmi and libmbim are on-going continuously. So is also the development of the cellular devices when the cellular technologies evolve. It is therefore recommended that you have a fairly recent version of ModemManager, libqmi and libmbim running in your system as well as when it comes to kernel version since the driver modules sometimes acquire patch fixes to be compatible with new chipset features etc.
Check Freedesktop.org pages for details on the latest ModemManager, NetworkManager, Libqmi and Libmbim releases.
Once you've installed ModemManager and rebooted your system, the service daemon should be running already in background.
Mmcli is the related command line interface tool which can be used to interact with ModemManager daemon through command line commands.
Check the version by command:
mmcli -V
<< mmcli 1.13.0
<< Copyright (2011 - 2020) Aleksander Morgado
<< License GPLv2+: GNU GPL version 2 or later
<< This is free software: you are free to change and redistribute it.
<< There is NO WARRANTY, to the extent permitted by law.
Print general mmcli help message:
mmcli --help
ModemManager normally listen, probes and detects cellular devices automatically when operating correctly but a forced scan can be triggered with command:
mmcli --scan-modems
<< successfully requested to scan devices
To list detected cellular devices use command:
mmcli --list-modems
<< /org/freedesktop/ModemManager1/Modem/0 [Sierra Wireless, Incorporated] MC7455
Here ModemManager have detected a Sierra Wireless cellular device and it has here been given the the identifier number 0 by ModemManager.
To acquire more device information and status use the --modem command and identifier value.
mmcli --modem=0
<< -----------------------------
<< General | dbus path: /org/freedesktop/ModemManager1/Modem/0
<< | device id: 3a2f5fad8e91dbf417694f23165017c1f8a6e061
<< -----------------------------
<< Hardware | manufacturer: Sierra Wireless, Incorporated
<< | model: MC7455
<< | firmware revision: SWI9X30C_02.32.11.00 r8042 CARMD-EV-FRMWR2 2019/05/15 21:52:20
<< | carrier config: default
<< | h/w revision: 1.0
<< | supported: gsm-umts, lte
<< | current: gsm-umts, lte
<< | equipment id: 359072066171840
<< -----------------------------
<< System | device: /sys/devices/pci0000:00/0000:00:14.0/usb3/3-2
<< | drivers: qcserial, qmi_wwan
<< | plugin: sierra
<< | primary port: cdc-wdm0
<< | ports: cdc-wdm0 (qmi), wwan1 (net), ttyUSB2 (at), wwan0 (net),
<< | cdc-wdm1 (qmi), ttyUSB1 (gps), ttyUSB0 (qcdm)
<< -----------------------------
<< Status | lock: sim-pin
<< | unlock retries: sim-pin (3), sim-puk (10), sim-pin2 (0), sim-puk2 (10)
<< | state: locked
<< | power state: on
<< | signal quality: 0% (cached)
<< -----------------------------
<< Modes | supported: allowed: 3g; preferred: none
<< | allowed: 4g; preferred: none
<< | allowed: 3g, 4g; preferred: 4g
<< | allowed: 3g, 4g; preferred: 3g
<< | current: allowed: 3g, 4g; preferred: 4g
<< -----------------------------
<< Bands | supported: utran-1, utran-3, utran-4, utran-5, utran-8, utran-2,
<< | eutran-1, eutran-2, eutran-3, eutran-4, eutran-5, eutran-7, eutran-8,
<< | eutran-12, eutran-13, eutran-20, eutran-25, eutran-26, eutran-29,
<< | eutran-30, eutran-41
<< | current: utran-1, utran-3, utran-4, utran-5, utran-8, utran-2,
<< | eutran-1, eutran-2, eutran-3, eutran-4, eutran-5, eutran-7, eutran-8,
<< | eutran-12, eutran-13, eutran-20, eutran-25, eutran-26, eutran-29,
<< | eutran-30, eutran-41
<< -----------------------------
<< IP | supported: ipv4, ipv6, ipv4v6
<< -----------------------------
<< SIM | dbus path: /org/freedesktop/ModemManager1/SIM/0
A detailed summary of device status, configs and system drivers, paths and IDs are returned.
Currently the device status indicates that inserted SIM card is PIN locked, so a unlock by --pin command is necessary:
mmcli --modem=0 --sim=0 --pin=****
<< successfully sent PIN code to the SIM
Now we can change device state to enabled using command:
mmcli --modem=0 --enable
<< successfully enabled the modem
if we're check device status again we can see that device:
mmcli --modem=0
…
<< --------------------------------
<< Status | lock: sim-puk2
<< | unlock retries: sim-pin (3), sim-puk (10), sim-pin2 (0), sim-puk2 (10)
<< | state: registered
<< | power state: on
<< | access tech: lte
<< | signal quality: 96% (recent)
…
<< 3GPP | imei: 359072066171840
<< | operator id: 24002
<< | operator name: 3
<< | registration: home
<< --------------------------------
<< 3GPP EPS | ue mode of operation: csps-2
<< --------------------------------
<< SIM | dbus path: /org/freedesktop/ModemManager1/SIM/0
The status output shows that devices is registered in network using LTE technology with a good signal strength.
It is now time to activate the data connection with --simple-connect command.
ModemManager will tie the data bearer for our given subscription APN to the qmi_wwan network interface, typically named wwan0 (unless renamed by Linux distribution or user)
Fill in the details as below but for your modem number, subscription APN and the IP type it can work with (ipv4 / ipv6 ipv4v6)
mmcli -m 0 --simple-connect='apn=data.tre.se,ip-type=ipv4v6'
<< successfully connected the modem
if we check modem status again we can see that a bearer have been established.
mmcli --modem=0
…
<< --------------------------------
<< Bearer | dbus path: /org/freedesktop/ModemManager1/Bearer/0
…
The bearer have got identifier number 0 so we can request more details for it to acquire the IP details:
mmcli --modem=0 --bearer=0
<< ------------------------------------
<< General | dbus path: /org/freedesktop/ModemManager1/Bearer/0
<< | type: default
<< ------------------------------------
<< Status | connected: yes
<< | suspended: no
<< | interface: wwan1
<< | ip timeout: 20
<< ------------------------------------
<< Properties | apn: data.tre.se
<< | roaming: allowed
<< | ip type: ipv4v6
<< ------------------------------------
<< IPv4 configuration | method: static
<< | address: 2.68.206.100
<< | prefix: 29
<< | gateway: 2.68.206.101
<< | dns: 80.251.201.177, 80.251.201.178
<< | mtu: 1500
<< ------------------------------------
<< IPv6 configuration | method: static
<< | address: 2a02:aa1:1010:b6bb:6d12:d0dc:978e:3982
<< | prefix: 64
<< | gateway: 2a02:aa1:1010:b6bb:21ea:c721:62c3:9760
<< | dns: 2a02:aa0::55, 2a02:aa0::56
<< | mtu: 1500
<< ------------------------------------
<< Statistics | duration: 450
<< | bytes rx: 6693
<< | attempts: 1
<< | total-duration: 450
<< | total-bytes rx: 6693
From here we can see the IP details we've been assigned by the cellular network.
ModemManager does not assign IPv4 address details to the cellular modules network interface in Linux by itself.
When ModemManager is used in conjunction with NetworkManager and the cellular connection is managed by it, then the IPv4 address details will be collected by NetworkManager through ModemManager and automatically assigned to network interface when connection is established.
If the system does not implement NetworkManager, then the IP and routing configuration needs to be handled by user software/scripting.
Example:
Enable network interface in Linux:
ip link set wwan0 up
Set the IPv4 address acquired from bearer information above, the CIDR subnet mask can always be set to 32:
ip addr add 2.68.206.100/32 dev wwan0
Disable ARP:
ip link set dev wwan0 arp off
Set MTU value acquired from network:
ip link set dev wwan0 mtu 1500
Add a default or other type of route to the cellular network device (e.g. with a metric to set which route to prefer)
ip route add default dev wwan0 metric 200
Add the DNS servers reported by cellular network or use other public/desired ones.
DNS server addresses are handled in different ways depending on the Linux distribution and network manager used. Therefore please refer to related dist documentation for best practice to add / maintain DNS server addresses in your specific system.
sh -c "echo 'nameserver 80.251.201.177' >> /etc/resolv.conf"
sh -c "echo 'nameserver 80.251.201.178' >> /etc/resolv.conf"
We should now have a network interface passing data successfully, we can try it out by doing ping requests:
IPv4 data:
ping -4 -c 4 -I wwan0 8.8.8.8
PING 8.8.8.8 (8.8.8.8) from 2.68.206.100 wwan0: 56(84) bytes of data.
64 bytes from 8.8.8.8: icmp_seq=1 ttl=57 time=50.8 ms
64 bytes from 8.8.8.8: icmp_seq=2 ttl=57 time=48.8 ms
64 bytes from 8.8.8.8: icmp_seq=3 ttl=57 time=24.0 ms
64 bytes from 8.8.8.8: icmp_seq=4 ttl=57 time=44.8 ms
--- 8.8.8.8 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3005ms
rtt min/avg/max/mdev = 23.979/42.115/50.840/10.694 ms
IPv6 data:
ping -6 -c 4 -I wwan0 2600::
PING 2600::(2600::) from 2a02:aa1:1010:b6bb:8962:7405:b81c:7627 wwan0: 56 data bytes
64 bytes from 2600::: icmp_seq=1 ttl=47 time=179 ms
64 bytes from 2600::: icmp_seq=2 ttl=47 time=176 ms
64 bytes from 2600::: icmp_seq=3 ttl=47 time=175 ms
64 bytes from 2600::: icmp_seq=4 ttl=47 time=177 ms
--- 2600:: ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3004ms
rtt min/avg/max/mdev = 175.411/176.935/179.268/1.446 ms
How-to change the cellular modulesUSB composition mode to Mobile Broadband Interface Model (MBIM) used by Windows 8 and 10 systems for controlling and establishing data connectivity through the built-in connection manager in Windows?
This is done by sending a set of AT commands to the cellular modules Modem or AT serial interface found in Windows Device Manager. Please see list below for associated AT commands.
(For additional details, refer to the product specific software, ports, and AT commands guides found on the Techship product web pages under technical documentation tab).
After the AT commands have been received by the module and has restarted, the USB interface endpoint composition should have changed to include MBIM interface as well.
You can find the correct Serial COM port number by checking Windows Device Manager, under the Modems drop down -> (right click and see properties for selected COM port info) or under the Ports (COM & LPT) drop down.
Vendor specific commands to use:
Sierra Wireless EM74xx, MC74xx series module:
AT!ENTERCND=”A710”
AT!USBCOMP=1,1,100D
AT!RESET
(See test command AT!USBCOMP=? for full usage description)
Sierra Wireless EM75xx series module:
AT!ENTERCND=”A710”
AT!USBCOMP=1,3,100D
AT!RESET
(See test command AT!USBCOMP=? for full usage description)
Sierra Wireless EM73xx, MC73xx series module:
AT!ENTERCND=”A710”
AT!UDUSBCOMP=8
AT!RESET
Simcom SIM7100, SIM7500 and SIM7600 series modules:
AT+CUSBPIDSWITCH=9003,1,1
AT+CRESET
ZTE Welink ME3630 series:
AT+ZSWITCH=8
AT+ZRST
Telit LE910C1 and LE910C4 series:
AT#USBCFG=2
AT#REBOOT
Telit LM940 and LM940A11:
AT#USBCFG=2
AT#REBOOT
Telit LM960 and LM960A18:
AT#USBCFG=2
AT#REBOOT
Telit LE910 V2 series:
AT#USBCFG=3
AT#REBOOT
On Huawei and Telit LN94x series modules the USB mode changing is done automatically by the modules Windows drivers based on current Windows version.
Please be aware that some USB mode configurations do not include any serial interfaces, making it impossible to revert the changes using AT commands.
What Linux kernel modules and configs are commonly used for communicating with cellular modules over their USB interface?
Most cellular modules can be supported in Linux by using som of the in-kernel drivers. The physical data interface to the host Linux system is usually done over USB which enumerates a set of different endpoints/interfaces. A set of serial interfaces for Modem/PPP, AT commands, NMEA location data and chipset debug information are almost always available in all configurations.
In addition some type of network endpoint/interface are also available and exposed. This can vary between manufacturers and chipset vendors and can also commonly be configurable by using USB configuration mode switching or through vendor specific AT commands.
Recommended kernel configurations to enable are listed bellow. Many cellular modules base their Linux support on these modules and drivers. Once included in the kernel build, the USB interfaces will be detected and bound correctly out-of-the-box or after applying source code patches to the driver modules.
Configs for USB serial drivers:
CONFIG_USB_SERIAL
CONFIG_USB_SERIAL_GENERIC
CONFIG_USB_SERIAL_WWAN
CONFIG_USB_SERIAL_OPTION
CONFIG_USB_SERIAL_QUALCOMM
CONFIG_USB_ACM
Configs for Modem/PPP support:
CONFIG_PPP
CONFIG_PPP_BSDCOMP
CONFIG_PPP_DEFLATE
CONFIG_PPP_FILTER
CONFIG_PPP_MPPE
CONFIG_PPP_MULTILINK
CONFIG_PPPOE
CONFIG_PPP_ASYNC
CONFIG_PPP_SYNC_TTY
Configs for USB network drivers:
CONFIG_USB_USBNET
CONFIG_USB_NET_QMI_WWAN
CONFIG_USB_NET_CDCETHER
CONFIG_USB_NET_RNDIS_HOST
CONFIG_USB_NET_CDC_NCM
CONFIG_USB_NET_HUAWEI_CDC_NCM
CONFIG_USB_NET_CDC_MBIM
Please relate to the Techship product specific web pages for vendor specific Linux integration guides.
Below is a selection of kernel commits relating to cellular module support in Linux kernels:
qmi_wwan: Add support for Fibocom NL678 series
qmi_wwan: Added support for Telit LN940 series
qmi_wwan: Added support for Fibocom NL668 series
USB: serial: option: add support for GosunCn ME3630 RNDIS mode
USB: serial: option: add support for Simcom SIM7500/SIM7600 RNDIS mode
USB: serial: option: add Simcom SIM7500/SIM7600 (MBIM mode)
USB: serial: option: add Fibocom NL678 series
USB: serial: option: add Telit LN940 series
USB: serial: option: add Fibocom NL668 series
USB: serial: option: add GosunCn ZTE WeLink ME3630
qmi_wwan: apply SET_DTR quirk to the SIMCOM shared device ID
If you use any of the listed cellular modules, drivers and specified USB modes in the commits above, ensure that your kernel version already include the patch or apply it to your build.
How to set up a simple data connection over Qualcomm QMI interface using libqmi and driver qmi_wwan in Linux?
Several cellular modules based on Qualcomm chipsets implements the Qualcomm MSM QMI RMNET Interface.
There is a open source Linux in-kernel driver supporting this interface called qmi_wwan. The helper library libqmi can be used to communicate with the cellular devices over the interface and do cellular module configurations to control and trigger the data connection over the cellular network.
Install the libqmi Linux library using e.g. your OS package manager like apt etc.
(Check out the official libqmi page here: https://www.freedesktop.org/wiki/Software/libqmi/)
Please be aware that libqmi is a 3rd party software not distributed by the chipset or module vendors. So full compatibility on all available commands should not be expected.
There are Qualcomm chipset standard QMI commands and in addition vendors specific custom QMI commands not supported by all manufacturers, but still available in libqmi. There are also new QMI commands not supported in older chipsets and vice versa, old QMI commands no longer supported in new chipset series.
Verify that you have the Linux in-kernel qmi_wwan driver installed and loaded for the cellular modules QMI interface endpoint over USB:
lsusb -t
Can look like this:
...
|__ Port 1: Dev 3, If 2, Class=Vendor Specific Class, Driver=qmi_wwan, 480M
...
If the driver is not loaded correctly, please verify that the cellular module is set to expose QMI RMNET network interface endpoint in its configuration. How to do so can often be found in AT commands guides, Linux implementation guides and similar from the cellular module vendors.
Libqmi library include a command line tool qmicli that can be used in a more convenient way communicate directly with the module over QMI interface for testing, scripting and troubleshooting.
The qmicli help will output information about all commands available:
qmicli --help-all
The qmi_wwan network control interfaces for modules are usually named like cdc-wdm# under /dev/ path.
Use the attribute --device or -d to specify it for qmicli in your command execution:
qmicli --device=/dev/cdc-wdm0
qmicli -d /dev/cdc-wdm0
In order to ease usage of the QMI interface and handle parallell command requests, libqmi include a proxy function to handle it correctly on the QMI interface, To use it, make sure to have the the attribute present in the qmicli command:
-p
--device-open-proxy
Example commands on how to communicate
Request module manufacturer:
qmicli -p -d /dev/cdc-wdm0 --dms-get-manufacturer
Get module model:
qmicli -p -d /dev/cdc-wdm0 --dms-get-model
Get firmware version:
qmicli -p -d /dev/cdc-wdm0 --dms-get-revision
Get module IDs (IMEI etc.):
qmicli -p -d /dev/cdc-wdm0 --dms-get-ids
Get SIM card status:
qmicli -p -d /dev/cdc-wdm0 --uim-get-card-status
The script qmi-network can be used to establish a simple data connection, it will automatically try to verify the IP framing type match them correctly between qmi_wwan driver and module (Raw-IP vs. 802.3 IP framing).
Create a config file containing your network operator APN details and if needed, the username and password.
Save it e.g. in the default location /etc/qmi-network.conf
The parameter --profile=[PATH] can be used to define the path to config when executing qmi-network.
Example config file content: APN details and enabling of proxy usage.
Add the username and password lines if it is needed for your APN:
APN=my-network-operators-apn
APN_USER=my-apn-username
APN_PASS=my-apn-password
PROXY=yes
Once the APN information is saved, you can start the network connection with the command:
qmi-network /dev/cdc-wdm0 start
The name of the related network interface in the Linux system can be acquired with the command:
qmicli -p -d /dev/cdc-wdm0 --get-wwan-iface
Once you see "Network started successfully" message, you can send a DHCP request on the network interface.
Please note that not all DHCP clients in Linux can handle Raw-IP format but udhcpc support it.
udhcpc -q -f -i wwan0
The IP information from the cellular network can also be acquired and set manually to the network interface by the user or scripting, the correct address details can be acquired from the cellular module over QMI with command:
qmicli -p -d /dev/cdc-wdm0 --wds-get-current-settings
If the connection was successfully set up and established, you now have a data connection. Ping request to a remote server using the cellular network interface can prove this:
ping -I wwan0 8.8.8.8
The ifconfig Linux tool can show the current details for the network interface:
ifconfig wwan0
To bring down and stop the cellular network connection, please use the stop command bellow:
qmi-network /dev/cdc-wdm0 stop
The ModemManager tool for Linux is based on libqmi. NetworkManager and ModemManager . Please note however that these two tools expect the cellular module interfaces to only be used by them so if you manually want to use the libqmi library or AT commands interfaces, please turn off/disable ModemManager and NetworkManager first.
The libqmi is a generic open source library for Linux systems and QMI protocol from Qualcomm, therefor there are several commands only working on selected devices and not necessarily on supported in the specific device you use, resulting in an error message.
How to establish a basic data connection using Sierra Wireless GobiNet driver and AT commands
A basic data connection can be established with AT commands when the Sierra Wireless module is used in USB mode: Qmi/Rmnet. This is supported when using the Sierra Wireless Windows drivers or the GobiNet + GobiSerial drivers. Please be aware that this is not supported when using the Linux in-kernel driver qmi_wwan.
Download and install the host OS drivers from the Techship product webpage. For Linux drivers follow the instructions in the "Linux QMI SDK Application Developers Guide". Make sure to build the GobiNet driver with RAWIP parameter set to 1.
When the drivers are set up correctly in Linux the USB endpoints should be bound as following:
usb-devices
T: Bus=02 Lev=01 Prnt=01 Port=03 Cnt=01 Dev#= 2 Spd=5000 MxCh= 0
D: Ver= 3.10 Cls=00(>ifc ) Sub=00 Prot=00 MxPS= 9 #Cfgs= 1
P: Vendor=1199 ProdID=9091 Rev=00.06
S: Manufacturer=Sierra Wireless, Incorporated
S: Product=Sierra Wireless EM7565 Qualcomm® Snapdragon™ X16 LTE-A
S: SerialNumber=UF74248663020633
C: #Ifs= 4 Cfg#= 1 Atr=a0 MxPwr=896mA
I: If#=0x0 Alt= 0 #EPs= 2 Cls=ff(vend.) Sub=ff Prot=ff Driver=GobiSerial
I: If#=0x2 Alt= 0 #EPs= 3 Cls=ff(vend.) Sub=00 Prot=00 Driver=GobiSerial
I: If#=0x3 Alt= 0 #EPs= 3 Cls=ff(vend.) Sub=00 Prot=00 Driver=GobiSerial
I: If#=0x8 Alt= 0 #EPs= 3 Cls=ff(vend.) Sub=ff Prot=ff Driver=GobiNet
First, start by enabling the modules network interface bound to the GobiNet driver, default name is usually wwan0. If not found check e.g in "dmesg" what it has been renamed to. Write:
ip link set wwan0 up
Now access the serial modem interface accepting AT commands with a serial interpreter.
In Windows it is the interface found under modem tree in device manager. You can e.g. use a tool like Teraterm to communicate manually with the module.
In Linux the GobiSerial interfaces are listed as ttyUSB interfaces in the /dev/ folder, usually /dev/ttyUSB2 is bound to the modem interface accepting AT commands. Tools like minicom can be used to communicate over a serial interface. For example: minicom -D /dev/ttyUSB2
Check that you get an OK reply from the command AT. Now perform normal initiation commands to have module registered in network, such as setting normal operational mode, entering PIN code if required for SIM card etc.
Define correct APN for your cellular subscription with the AT+CGDCONT command if it is not already correctly entered:
AT+CGDCONT=1, "IPV4V6", "your.operators.apn"
Now you can activate the data connection with the command AT!SCACT=state,pid. For example activating the connection for CGDCONT profile 1:
AT!SCACT=1,1
Once OK is received, you can go ahead and execute a DHCP client on the GobiNet network interface from your Linux host. (In Windows this is all done automatically). For example uou can use dhclient in ubuntu:
dhclient -v wwan0
Now we should have a working network connection in your system over the modules network interface. You can for example test it in Linux by pinging Googles name server:
ping -I wwan0 8.8.8.8
PING 8.8.8.8 (8.8.8.8) from 10.70.245.136 wwan0: 56(84) bytes of data.
64 bytes from 8.8.8.8: icmp_seq=1 ttl=53 time=176 ms
64 bytes from 8.8.8.8: icmp_seq=2 ttl=53 time=79.6 ms
64 bytes from 8.8.8.8: icmp_seq=3 ttl=53 time=69.5 ms
64 bytes from 8.8.8.8: icmp_seq=4 ttl=53 time=67.6 ms
64 bytes from 8.8.8.8: icmp_seq=5 ttl=53 time=55.5 ms
^C
--- 8.8.8.8 ping statistics ---
5 packets transmitted, 5 received, 0% packet loss, time 4008ms
rtt min/avg/max/mdev = 55.533/89.558/175.584/43.687 ms
Please relate to the modules AT commands guide for full explanations of the AT commands. This is a brief example of how to establish a network connection. For automating the procedure additional status checks are highly recommended as well as looking into integrating Sierra Wireless Linux QMI SDK instead of only relying on legacy AT commands.
In Windows 8 and later systems it is recommended to set the module in MBIM USB mode instead of the default QMI/RMNET mode to enable support for Windows built in connection manager. Please see the FAQ section for more details on how to do so.
We cannot acquire an DHCP address over qmi_wwan driver when using Raspbian Linux OS?
Raspbian uses dhcpd to probe all available network interfaces found in the system, which is problematic for the qmi_wwan driver interface, if it is done before being configured properly when using cellular modules supporting only Raw-IP.
This can be avoided by setting dhcpd to deny the related cellular module network interface (most often named wwan0 by the system).
Add to the /etc/dhcpcd.conf file in Raspbian the following line (in the end):
denyinterfaces wwan0
Now, restart the system (preferably re-power it) so cellular module fully restarts also.
At next startup, the settings should be applied and you can now configure and use the qmi interface as described in some of the others faq's, found on the Techship webpage.
What firmware versions are related to the specific SKU/BOM codes of cellular modules?
Sierra Wireless
10839 Sierra Wireless EM7565, CAT-12, M.2 CBRS ENABLED
SKU: 1104207 Firmware: 01.07.02.00 GENERIC
10692 Sierra Wireless EM7565 LTE CAT-12 M.2
SKU: 1103520 Firmware: 01.07.02.00 GENERIC
10375 Sierra Wireless EM7455 LTE Cat 6
SKU: 1103582 Firmware: 02.24.05.06 GENERIC/AT&T/SPRINT/VERIZON
SKU: 1103780 Firmware: 02.24.05.06 GENERIC/AT&T/SPRINT/VERIZON
10427 Sierra Wireless EM7430
SKU: 1103733 Firmware: 02.24.05.06 GENERIC/DOCOMO/KDDI/SOFTBANK/TELSTRA
10374 Sierra Wireless MC7455 LTE Cat 6
SKU: 1103789 Firmware: 02.24.05.06 GENERIC/AT&T/BELL/ROGERS/SPRINT/TELUS/US CELLULAR/VERIZON/VODAFONE
10397 Sierra Wireless MC7430 mPCIe
SKU: 1103737 Firmware: 02.24.05.06 GENERIC/DOCOMO/KDDI/SOFTBANK/TELSTRA
10840 Sierra Wireless EM7511
SKU: 1103989 Firmware: 01.07.02.00 AT&T/GENERIC
Huawei:
10278 Huawei ME909s-120 mPCIe:
SKU: 55010273 Firmware: 11.617.01.00.00
SKU: 55010782 Firmware: 11.617.09.00.00
SKU: 55010946 Firmware: 11.617.14.00.00
SKU: 55010983 Firmware: 11.617.15.00.00
10279 Huawei ME909s-120 LGA EU:
SKU: 55010781 Firmware: 11.617.09.00.00
SKU: 55010782 Firmware: 11.617.15.00.00
Simcom:
10689 SIMCom SIM7600E-H LTE SMT EU
SKU: S2-107EQ-Z1W27 Firmware: LE11 B07 SIM7600M22
SKU: S2-107EQ-Z1W2L Firmware: LE11 B08 SIM7600M22
SKU: S2-107EQ-Z1W3S Firmware: LE11 B09 SIM7600M22
SKU: S2-107EQ-Z1W4J Firmware: LE11 B10 SIM7600M22
SKU: S2-107EQ-Z1W51 Firmware: LE11 B11 SIM7600M22
10690 SIMCom SIM7600E-H LTE mPCIe EU
SKU: S2-107ER-Z1W2L Firmware: LE11 B07 SIM7600M22
SKU: S2-107ER-Z1W2L Firmware: LE11 B08 SIM7600M22
SKU: S2-107ER-Z1W3S Firmware: LE11 B09 SIM7600M22
SKU: S2-107ER-Z1W4J Firmware: LE11 B10 SIM7600M22
SKU: S2-107ES-Z1W51 Firmware: LE11 B11 SIM7600M22
10818 SIMCom SIM7600E-H LTE CAT 4 -mPCIE with Audio
SKU: S2-107ES-Z1W27 Firmware: Firmware: LE11B07SIM7600M22
SKU: S2-107ES-Z1W2L Firmware: LE11B08SIM7600M22
SKU: S2-107ES-Z1W3S Firmware: LE11B09SIM7600M22
SKU: S2-107ES-Z1W4J Firmware: LE11B10SIM7600M22
SKU: S2-107ES-Z1W51 Firmware: LE11B11SIM7600M22
10710 SIMCom SIM7600E-H LTE CAT-4 mPCIe SIM
SKU: S2-107Q0-Z1W27 Firmware: LE11 B07 SIM7600M22
SKU: S2-107Q0-Z1W2L Firmware: LE11 B08 SIM7600M22
SKU: S2-107Q0-Z1W3S Firmware: LE11 B09 SIM7600M22
SKU: S2-107Q0-Z1W4J Firmware: LE11 B10 SIM7600M22
SKU: S2-107Q0-Z1W51 Firmware: LE11 B11 SIM7600M22
SIM7600SA-H SMT type
SKU: S2-107BH-Z1W27 Firmware: LE11 B07 SIM7600M22
SKU: S2-107BH-Z1W2L Firmware: LE11 B08 SIM7600M22
SKU: S2-107BH-Z1W3S Firmware: LE11 B09 SIM7600M22
SKU: S2-107BH-Z1W4J Firmware: LE11 B10 SIM7600M22
SKU: S2-107BH-Z1W51 Firmware: LE11 B11 SIM7600M22
10757 SIMCom SIM7600SA-H LTE CAT-4 mPCIe
SKU: S2-107KX-Z1W27 Firmware: LE11 B07 SIM7600M22
SKU: S2-107KX-Z1W2L Firmware: LE11 B08 SIM7600M22
SKU: S2-107KX-Z1W3S Firmware: LE11 B09 SIM7600M22
SKU: S2-107KX-Z1W4J Firmware: LE11 B10 SIM7600M22
SKU: S2-107KX-Z1W51 Firmware: LE11 B11 SIM7600M22
SIM7600SA-H LTE CAT 4 -mPCIE with Audio
SKU: S2-107KY-Z1W27 Firmware: LE11 B07 SIM7600M22
SKU: S2-107KY-Z1W2L Firmware: LE11 B08 SIM7600M22
SKU: S2-107KY-Z1W3S Firmware: LE11 B09 SIM7600M22
SKU: S2-107KY-Z1W4J Firmware: LE11 B10 SIM7600M22
SKU: S2-107KY-Z1W51 Firmware: LE11 B11 SIM7600M22
10810 SIMCom SIM7600SA-H LTE CAT-4 mPCIe with SIM holder
SKU: S2-107QZ-Z1W2L Firmware: LE11 B08 SIM7600M22
SKU: S2-107QZ-Z1W3S Firmware: LE11 B09 SIM7600M22
SKU: S2-107QZ-Z1W4J Firmware: LE11 B10 SIM7600M22
SKU: S2-107QZ-Z1W51 Firmware: LE11 B11 SIM7600M22
SIM7600E SMT type
SKU: S2-107EP-Z1W2P Firmware: LE11 B01 SIM7600M21-A
SKU: S2-107EP-Z1W4D Firmware: LE11 B02 SIM7600M21-A
10812 SIMCom SIM7600E CAT-1 mPCIe
SKU: S2-107ET-Z1W2P Firmware: LE11 B01 SIM7600M21-A
SKU: S2-107ET-Z1W4D Firmware: LE11 B02 SIM7600M21-A
SIM7600E LTE CAT 1 -mPCIE with Audio
SKU: S2-107EV-Z1W2P Firmware: LE11 B01 SIM7600M21-A
SKU: S2-107EV-Z1W4D Firmware: LE11 B02 SIM7600M21-A
10813 SIMCom SIM7600SA LTE CAT-1 mPCIe
SKU: S2-107KV-Z1W2P Firmware: LE11 B01 SIM7600M21-A
SKU: S2-107KV-Z1W4D Firmware: LE11 B02 SIM7600M21-A
SIM7600SA SMT type
SKU: S2-107BG-Z1W2P Firmware: LE11 B01 SIM7600M21-A
SKU: S2-107BG-Z1W4D Firmware: LE11 B02 SIM7600M21-A
SIM7600SA LTE CAT 1 -mPCIE with Audio
SKU: S2-107KW-Z1W2P Firmware: LE11 B01 SIM7600M21-A
SKU: S2-107KW-Z1W4D Firmware: LE11 B02 SIM7600M21-A
10305 SimCom SIM7100 LTE mPCIe US
SKU: S2-106EW-Z1L7X Firmware: 4534B03SIM7100A
SKU: S2-106EW-Z1L72 Firmware: 4534B03SIM7100A