TECHSHIP IS A GLOBAL SUPPLIER OF WIRELESS COMPONENTS

Register

Sierra Wireless EM9190 5G NR M.2

Article Number: 11106
Brand: Sierra Wireless
Supplier number: 1104567 ES3

The Sierra Wireless EM9190 is a 5G module offering global connectivity. Designed in an M.2 form factor, the EM9190 is compatible with Sierra Wireless's EM7690 4G LTE-A Pro module, to help facilitate the migration and differentiation between 4G LTE and 5G.

This 5G NR Sub-6 GHz and mmWave embedded module delivers up to 5.5Gbps downlink speed and 3Gbps uplink speed. With automatic 4G and 3G fallback networks, and integrated GNSS receiver (GPS, GLONASS, BeiDou, and Galileo satellite systems supported), the EM9190 is applicable to a wide range of IoT applications such as industrial routers, home gateways, industrial and consumer laptops, rugged tablet PCs, video surveillance and digital signage.

To speed up development, we recommend you also buy a developer kit
11131, Sierra Wireless M.2 Developer Kit EM9/EM76 Series

End-of-life

This product has reached
end-of-life and can not be
ordered any more.

Quantity Price

No prices available

For more information
please contact us at
sales-americas@techship.com

For larger quantities and complete pricing, please sign in or register

Subscribe to stay up to date with the latest about this product.

Subscribe to updates
LTE Bands
B1 (FDD 2100)
B2 (FDD 1900)
B3 (FDD 1800)
B4 (FDD 1700 / AWS)
B7 (FDD 2600)
B8 (FDD 900)
B9 (FDD 1800)
B12 (FDD 700ac)
B13 (FDD 700c)
B14 (FDD 700PS)
B18 (FDD 800lower)
B19 (FDD 800 upper)
B20 (FDD 800DD)
B5 (FDD 850)
B25 (FDD 1900)
B42 (TDD 3500)
B38 (TDD 2600)
B40 (TDD 2300)
B43 (TDD 3600)
B26 (FDD 850 Ext)
B28 (FDD 700 APAC)
B29 (US 700de Lower)
B39 (TDD 1900)
B41 (TDD 2500)
B30 (FDD 2300 WCS)
B66 (FDD 1700 / AWS-3)
B32 (1500)
B46 (TDD 5200)
B48 (TDD 3600)
B71 (FDD 600)
Region
Europe
North America
Australia
Japan
Africa
APAC
5G Sub6 Bands
n1 (2100)
n2 (1900)
n3 (1800)
n5 (850)
n7 (2600)
n12 (700)
n20 (800)
n28 (700)
n41 (TDD 2500)
n66 (AWS-3)
n71 (600)
n77 (TDD 3700)
n78 (TDD 3500)
n79 (TDD 4500)
n8 (900)
n25 (1900)
n38 (2600)
n39 (1900)
n40 (2300)
n66 (1700)
n48 (3600)
5G mmWave Bands
n257 (28 GHz)
n258 (26 GHz)
n260 (39 GHz)
n261 (28 GHz)
Form Factor
M.2
M.2 3052
Technology
5G
GNSS
Yes
GNSS technology
GPS
GLONASS
BeiDou
Galileo
Chipset
Qualcomm
SDX55
Driver Support
Linux
Windows 10
Data Interface
PCIe
USB 3.0
Size
30x52x2.38 mm

Product technical specification for the Sierra Wireless AirPrime EM919x series 5G cellular module series and the EM7690 4G LTE-A cat 20 cellular module.

Download

Uploaded at
2020-09-28 15:23:31
Last updated
2020-12-08 09:04:03
Version
Rev. 2
Related products
Sierra Wireless EM9190 5G NR M.2
Sierra Wireless EM9191 5G sub-6 M.2
Sierra Wireless EM7690 LTE CAT-20

Current consumption application note Sierra Wireless AirPrime EM9190 - EM7690 Series modules.

Download

Uploaded at
2020-09-28 15:45:34
Last updated
2020-09-28 15:45:34
Version
Rev1.1
Related products
Sierra Wireless EM7690 LTE CAT-20
Sierra Wireless EM9191 5G sub-6 M.2
Sierra Wireless EM9190 5G NR M.2

Thermal mitigation guide for Sierra Wireless AirPrime EM919x-EM7690 series M.2 key B modules.

Download

Uploaded at
2020-09-28 15:38:56
Last updated
2020-09-28 15:38:56
Version
Rev1.2
Related products
Sierra Wireless EM7690 LTE CAT-20
Sierra Wireless EM9191 5G sub-6 M.2
Sierra Wireless EM9190 5G NR M.2

User guide for the Sierra Wireless AirPrime EM919x - EM7690 series modules development kit.

Download

Uploaded at
2020-09-28 15:34:27
Last updated
2020-09-28 15:34:27
Version
Rev1.1
Related products
Sierra Wireless EM7690 LTE CAT-20
Sierra Wireless EM9191 5G sub-6 M.2
Sierra Wireless EM9190 5G NR M.2

AT command reference for the Sierra Wireless EM7690 and EM919x series 5G cellular modules.

Download

Uploaded at
2021-03-01 09:14:55
Last updated
2021-03-01 09:14:55
Version
41113480 Rev1.7
Related products
Sierra Wireless EM7690 LTE CAT-20
Sierra Wireless EM9191 5G sub-6 M.2
Sierra Wireless EM9190 5G NR M.2

Application note for the Sierra Wireless AirPrime EM919x - EM7690 series sleep modes.

Download

Uploaded at
2020-09-28 15:54:33
Last updated
2020-09-28 15:54:33
Version
Rev1.1
Related products
Sierra Wireless EM7690 LTE CAT-20
Sierra Wireless EM9191 5G sub-6 M.2
Sierra Wireless EM9190 5G NR M.2

Customer production test mode application note for Sierra Wireless AirPrime EM919x - EM7690 series cellular modules.

Download

Uploaded at
2020-09-28 15:59:33
Last updated
2020-11-11 10:36:14
Version
Rev1.4
Related products
Sierra Wireless EM9190 5G NR M.2
Sierra Wireless EM9191 5G sub-6 M.2
Sierra Wireless EM7690 LTE CAT-20

Non-mmWave smart transmit application note for Sierra Wireless AirPrime EM919x - EM7690 series cellular modules.

Download

Uploaded at
2020-09-28 15:57:09
Last updated
2020-09-28 15:57:09
Version
Rev1.0
Related products
Sierra Wireless EM7690 LTE CAT-20
Sierra Wireless EM9191 5G sub-6 M.2
Sierra Wireless EM9190 5G NR M.2
Question

How-to guide: How can we control, configure and establish a simple data connection for a cellular module in Linux systems using the open source ModemManager tool for modem control and connection management.

Solution

ModemManager is a open source tool for Linux that can be used to communicate with cellular devices for configuration, status check, connection triggering etc. It is capable of communicate over several types of device control channels such as QMI/RMNET, MBIM, MODEM / AT command etc.

It is hosted by the Freedesktop.org community and driven by Aleksander Morgado and other contributors, please visit https://www.freedesktop.org/wiki/Software/ModemManager/ for latest information, source code, API reference manuals, debugging tips, contribution, mailing list etc.

Keep in mind that ModemManager is not directly developed or driven by cellular device vendors and the compatibility cannot be guaranteed for the specific device you aim to use. Some vendors contribute with code to make their devices fully compatible, while others don't. However many cellular devices can be set to expose standardized types of USB network interface and control channel such as MBIM interface by USB-IF or the Qualcomm proprietary interface QMI that ModemManager will try to identify, and often manage to work successfully with.

Before continuing with ModemManager, a good thing to ensure is that you have common Linux driver modules available in your kernel build.
You can compare your own systems kernel config with the ones listed in the following FAQ:
Common Linux kernel modules and configs necessary for communicating with cellular modules over USB interface
Selections of these are commonly used by cellular devices and need to be available in order to have device drivers correctly loaded when devices are detected.

Start by installing ModemManager and its dependencies to your Linux system.
You can build it from source code release tarball found at freedesktop.org (install instructions included in the archive)
If you have a package manager in your Linux distribution, it can usually be installed through them also.
E.g. on Ubuntu using apt to install it and related dependencies:
apt install modemmanager libmbim-utils libqmi-utils

Keep in mind that Linux distributions sometimes rely on fairly old releases in their repositories and the development of ModemManager, libqmi and libmbim are on-going continuously. So is also the development of the cellular devices when the cellular technologies evolve. It is therefore recommended that you have a fairly recent version of ModemManager, libqmi and libmbim running in your system as well as when it comes to kernel version since the driver modules sometimes acquire patch fixes to be compatible with new chipset features etc.
Check Freedesktop.org pages for details on the latest ModemManager, NetworkManager, Libqmi and Libmbim releases.

Once you've installed ModemManager and rebooted your system, the service daemon should be running already in background.
Mmcli is the related command line interface tool which can be used to interact with ModemManager daemon through command line commands.

Check the version by command:
mmcli -V
<< mmcli 1.13.0
<< Copyright (2011 - 2020) Aleksander Morgado
<< License GPLv2+: GNU GPL version 2 or later
<< This is free software: you are free to change and redistribute it.
<< There is NO WARRANTY, to the extent permitted by law.

Print general mmcli help message:
mmcli --help

ModemManager normally listen, probes and detects cellular devices automatically when operating correctly but a forced scan can be triggered with command:
mmcli --scan-modems
<< successfully requested to scan devices

To list detected cellular devices use command:
mmcli --list-modems
<< /org/freedesktop/ModemManager1/Modem/0 [Sierra Wireless, Incorporated] MC7455

Here ModemManager have detected a Sierra Wireless cellular device and it has here been given the the identifier number 0 by ModemManager.

To acquire more device information and status use the --modem command and identifier value.
mmcli --modem=0
<< -----------------------------
<< General | dbus path: /org/freedesktop/ModemManager1/Modem/0
<< | device id: 3a2f5fad8e91dbf417694f23165017c1f8a6e061
<< -----------------------------
<< Hardware | manufacturer: Sierra Wireless, Incorporated
<< | model: MC7455
<< | firmware revision: SWI9X30C_02.32.11.00 r8042 CARMD-EV-FRMWR2 2019/05/15 21:52:20
<< | carrier config: default
<< | h/w revision: 1.0
<< | supported: gsm-umts, lte
<< | current: gsm-umts, lte
<< | equipment id: 359072066171840
<< -----------------------------
<< System | device: /sys/devices/pci0000:00/0000:00:14.0/usb3/3-2
<< | drivers: qcserial, qmi_wwan
<< | plugin: sierra
<< | primary port: cdc-wdm0
<< | ports: cdc-wdm0 (qmi), wwan1 (net), ttyUSB2 (at), wwan0 (net),
<< | cdc-wdm1 (qmi), ttyUSB1 (gps), ttyUSB0 (qcdm)
<< -----------------------------
<< Status | lock: sim-pin
<< | unlock retries: sim-pin (3), sim-puk (10), sim-pin2 (0), sim-puk2 (10)
<< | state: locked
<< | power state: on
<< | signal quality: 0% (cached)
<< -----------------------------
<< Modes | supported: allowed: 3g; preferred: none
<< | allowed: 4g; preferred: none
<< | allowed: 3g, 4g; preferred: 4g
<< | allowed: 3g, 4g; preferred: 3g
<< | current: allowed: 3g, 4g; preferred: 4g
<< -----------------------------
<< Bands | supported: utran-1, utran-3, utran-4, utran-5, utran-8, utran-2,
<< | eutran-1, eutran-2, eutran-3, eutran-4, eutran-5, eutran-7, eutran-8,
<< | eutran-12, eutran-13, eutran-20, eutran-25, eutran-26, eutran-29,
<< | eutran-30, eutran-41
<< | current: utran-1, utran-3, utran-4, utran-5, utran-8, utran-2,
<< | eutran-1, eutran-2, eutran-3, eutran-4, eutran-5, eutran-7, eutran-8,
<< | eutran-12, eutran-13, eutran-20, eutran-25, eutran-26, eutran-29,
<< | eutran-30, eutran-41
<< -----------------------------
<< IP | supported: ipv4, ipv6, ipv4v6
<< -----------------------------
<< SIM | dbus path: /org/freedesktop/ModemManager1/SIM/0

A detailed summary of device status, configs and system drivers, paths and IDs are returned.

Currently the device status indicates that inserted SIM card is PIN locked, so a unlock by --pin command is necessary:
mmcli --modem=0 --sim=0 --pin=****
<< successfully sent PIN code to the SIM

Now we can change device state to enabled using command:
mmcli --modem=0 --enable
<< successfully enabled the modem

if we're check device status again we can see that device:
mmcli --modem=0

<< --------------------------------
<< Status | lock: sim-puk2
<< | unlock retries: sim-pin (3), sim-puk (10), sim-pin2 (0), sim-puk2 (10)
<< | state: registered
<< | power state: on
<< | access tech: lte
<< | signal quality: 96% (recent)

<< 3GPP | imei: 359072066171840
<< | operator id: 24002
<< | operator name: 3
<< | registration: home
<< --------------------------------
<< 3GPP EPS | ue mode of operation: csps-2
<< --------------------------------
<< SIM | dbus path: /org/freedesktop/ModemManager1/SIM/0


The status output shows that devices is registered in network using LTE technology with a good signal strength.

It is now time to activate the data connection with --simple-connect command.
ModemManager will tie the data bearer for our given subscription APN to the qmi_wwan network interface, typically named wwan0 (unless renamed by Linux distribution or user)
Fill in the details as below but for your modem number, subscription APN and the IP type it can work with (ipv4 / ipv6 ipv4v6)
mmcli -m 0 --simple-connect='apn=data.tre.se,ip-type=ipv4v6'
<< successfully connected the modem

if we check modem status again we can see that a bearer have been established.
mmcli --modem=0

<< --------------------------------
<< Bearer | dbus path: /org/freedesktop/ModemManager1/Bearer/0


The bearer have got identifier number 0 so we can request more details for it to acquire the IP details:

mmcli --modem=0 --bearer=0
<< ------------------------------------
<< General | dbus path: /org/freedesktop/ModemManager1/Bearer/0
<< | type: default
<< ------------------------------------
<< Status | connected: yes
<< | suspended: no
<< | interface: wwan1
<< | ip timeout: 20
<< ------------------------------------
<< Properties | apn: data.tre.se
<< | roaming: allowed
<< | ip type: ipv4v6
<< ------------------------------------
<< IPv4 configuration | method: static
<< | address: 2.68.206.100
<< | prefix: 29
<< | gateway: 2.68.206.101
<< | dns: 80.251.201.177, 80.251.201.178
<< | mtu: 1500
<< ------------------------------------
<< IPv6 configuration | method: static
<< | address: 2a02:aa1:1010:b6bb:6d12:d0dc:978e:3982
<< | prefix: 64
<< | gateway: 2a02:aa1:1010:b6bb:21ea:c721:62c3:9760
<< | dns: 2a02:aa0::55, 2a02:aa0::56
<< | mtu: 1500
<< ------------------------------------
<< Statistics | duration: 450
<< | bytes rx: 6693
<< | attempts: 1
<< | total-duration: 450
<< | total-bytes rx: 6693

From here we can see the IP details we've been assigned by the cellular network.
ModemManager does not assign IPv4 address details to the cellular modules network interface in Linux by itself.
When ModemManager is used in conjunction with NetworkManager and the cellular connection is managed by it, then the IPv4 address details will be collected by NetworkManager through ModemManager and automatically assigned to network interface when connection is established.
If the system does not implement NetworkManager, then the IP and routing configuration needs to be handled by user software/scripting.

Example:
Enable network interface in Linux:
ip link set wwan0 up

Set the IPv4 address acquired from bearer information above, the CIDR subnet mask can always be set to 32:
ip addr add 2.68.206.100/32 dev wwan0

Disable ARP:
ip link set dev wwan0 arp off

Set MTU value acquired from network:
ip link set dev wwan0 mtu 1500

Add a default or other type of route to the cellular network device (e.g. with a metric to set which route to prefer)
ip route add default dev wwan0 metric 200

Add the DNS servers reported by cellular network or use other public/desired ones.
DNS server addresses are handled in different ways depending on the Linux distribution and network manager used. Therefore please refer to related dist documentation for best practice to add / maintain DNS server addresses in your specific system.
sh -c "echo 'nameserver 80.251.201.177' >> /etc/resolv.conf"
sh -c "echo 'nameserver 80.251.201.178' >> /etc/resolv.conf"

We should now have a network interface passing data successfully, we can try it out by doing ping requests:
IPv4 data:
ping -4 -c 4 -I wwan0 8.8.8.8
PING 8.8.8.8 (8.8.8.8) from 2.68.206.100 wwan0: 56(84) bytes of data.
64 bytes from 8.8.8.8: icmp_seq=1 ttl=57 time=50.8 ms
64 bytes from 8.8.8.8: icmp_seq=2 ttl=57 time=48.8 ms
64 bytes from 8.8.8.8: icmp_seq=3 ttl=57 time=24.0 ms
64 bytes from 8.8.8.8: icmp_seq=4 ttl=57 time=44.8 ms

--- 8.8.8.8 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3005ms
rtt min/avg/max/mdev = 23.979/42.115/50.840/10.694 ms

IPv6 data:
ping -6 -c 4 -I wwan0 2600::
PING 2600::(2600::) from 2a02:aa1:1010:b6bb:8962:7405:b81c:7627 wwan0: 56 data bytes
64 bytes from 2600::: icmp_seq=1 ttl=47 time=179 ms
64 bytes from 2600::: icmp_seq=2 ttl=47 time=176 ms
64 bytes from 2600::: icmp_seq=3 ttl=47 time=175 ms
64 bytes from 2600::: icmp_seq=4 ttl=47 time=177 ms

--- 2600:: ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3004ms
rtt min/avg/max/mdev = 175.411/176.935/179.268/1.446 ms

Related products
Huawei ME909u-521 - EU/ASIA
Huawei ME909u-523D - US - AT&T
Huawei ME909u-521 Mini PCI Express - EU/ASIA
Huawei ME909u-523D Mini PCI Express - US - AT&T
Huawei MS2131i-8 USB-stick
Huawei ME909s-821 mPCIe
Huawei ME909s-821 LGA
Huawei ME909s-120 mPCIe EU
Huawei ME909s-120 LGA EU
SimCom SIM7100E LTE SMT EU
SimCom SIM7100E LTE mPCIe EU
SimCom SIM7100A LTE mPCIe US
SimCom SIM7100C LTE mPCIe China
Sierra Wireless MC7455 LTE Cat 6
Sierra Wireless EM7455 LTE Cat 6
SimCom SIM7100E LTE mPCIe SIM
Sierra Wireless MC7430 mPCIe
Sierra Wireless EM7430 LTE Cat 6
SIMCom SIM7500A LTE SMT US
SIMCom SIM7500E LTE SMT EU
SIMCom SIM7500E LTE mPCIe EU
SIMCom SIM7500SA LTE mPCIe Audio
SIMCom SIM7000E CAT-M1/NB1 SMT
Telit HE910-G HSPA+, GPS, mPCIe
Telit HE910-G-SIM HSPA+, GPS, miniPCIe, SIM card holder
Telit HE910-D HSPA+, miniPCIe, Global
Telit HE910-D-SIM HSPA+, miniPCIe, SIM card holder
Telit LM940A11 LTE CAT-11, GPS, mPCIe
Telit LE910-EU V2 LTE CAT-4, mPCIe
Telit LE910-SV V2 LTE CAT-4, Verizon, mPCIe
Telit LE910-NA V2 LTE CAT-4, AT T, TM, mPCIe
Telit LE910-AU V2 LTE CAT-4, Telstra, mPCIe
Telit HE910-GL SIM UMTS, miniPCIe, SIM card holder
Telit HE910-G (Voice) HSPA+ LGA
Telit HE910-DG HSPA+ LGA
Telit HE910-EUD HSPA LGA
Telit LE910-NA1 LTE CAT-1 LGA
Telit LE910-EU1 LTE CAT-1 LGA
Telit LE910-SV1 LTE CAT-1 LGA
Telit LE910-EU V2 LTE CAT-4 LGA
Telit LE910-NA V2 LTE CAT-4 LGA
Telit LE910D1-E1 LTE CAT-1 LGA
Huawei MS2372h-153 LTE USB Dongle EU
SIMCom SIM7600E-H LTE SMT EU
SIMCom SIM7600E-H LTE CAT-4 mPCIe EU
SIMCom SIM7600E-H LTE CAT-4 mPCIe SIM
Huawei MS2372h-517 LTE USB Dongle US
SIMCom SIM7600A-H LTE CAT-4 mPCIe Audio
Huawei MS2372h-607 LTE USB Dongle Asia
Telit LE910-NA V2 LTE CAT-4, S.SKU, mPCIe
SIMCom SIM7600SA-H LTE CAT-4 mPCIe
Simcom SIM7600JC-H LTE CAT-4 mPCIe
SIMCom SIM7600A-H LTE CAT-4 mPCIe US
SIMCom SIM7600V-H LTE CAT-4 mPCIe Audio Verizon
SIMCom SIM7000G
Fibocom NL668-EAU mPCIe LTE CAT-4
SIMCom SIM7600SA-H LTE CAT-4 mPCIe with SIM holder
SIMCom SIM7600E LTE CAT-1 mPCIe
SIMCom SIM7600SA LTE CAT-1 mPCIe
SIMCom SIM7600E-H LTE CAT 4 -mPCIE with Audio
Telit LM960 LTE CAT-18, GPS, mPCIe
Sierra Wireless EM7565, CAT-12, M.2 CBRS Enabled
SIMCom SIM7000E CAT-M1/NB1 mPCIe
SIMCom SIM7000G CAT-M/NB-IoT/GSM miniPCIe
Fibocom NL678-E mPCIe LTE CAT-6
SIMCom SIM7600A-H LTE CAT-4 mPCIe-SIM
SIMCom SIM7600CE-T LTE CAT-4 mPCIe CN
Sierra Wireless MC-WP7607 LTE CAT-4 mPCIe
Telit LE910C4-NF LTE CAT-4 mPCIe
Telit LE910-NA V2 LTE CAT-4, S.SKU LGA
Telit LE910B1-NA S.SKU LTE Cat-1 LGA
Telit LE910C1-NS LTE CAT-1 Sprint mPCIe
Telit LE910-SVL LTE CAT-1
Telit HE910-GL HSPA+ LGA
SIMCom SIM7000A CAT-M SMT Verizon
SIMCom SIM7000A CAT-M SMT AT&T
SIMCom SIM7906E LTE CAT-6 M.2
SIMCom SIM7906E LTE CAT-6 mPCIe
SIMCom SIM7000A CAT-M mPCIe
Telit HE910-NAD HSPA+ LGA
Telit LE910-SVG LTE CAT-3 LGA
Telit HE910-NAR HSPA LGA
Telit HE910-D HSPA+ LGA
Telit LE910C1-NA LTE CAT-1 AT&T LGA
Telit LE910C1-NS LTE CAT-1 Sprint LGA
Telit LE910-NAG LTE CAT-3 AT&T LGA
Telit LE910-SVG LTE CAT-3 mPCIe
Telit LE910-NVG LTE CAT-3 LGA
SIMCom SIM7600G-H LTE CAT-4 mPCIe
Telit LE910-NA1 S.SKU LTE Cat-1 LGA
Telit LE910-JN1 LTE Cat-1 LGA
Telit LE910C1-AP
Telit LE910C1-EU LTE CAT-1 LGA
Telit LE910B1-NA
Telit LE910B1-SA
Telit LE910-AU V2
Telit LE910-SV V2
Telit LE910B4-NA
Telit LE910C4-NF
Telit LE910-SV1 LTE Cat-1 mPCIe
Telit LE910-EU1 LTE Cat-1 mPCIe
Telit LE910-JN1 LTE Cat-1 mPCIe
Telit LE910-NA1 LTE Cat-1 mPCIe
Telit LE910C1-AP LTE CAT-1 mPCIe
Telit LE910C1-EU LTE CAT-1 mPCIe
Telit LE910C4-EU LTE CAT-4 mPCIe
Telit LE910C4-EU LTE CAT-4 mPCIe SIM
Telit LE910C1-NF S.SKU LTE CAT-1 LGA
Telit LM940A11, HW Rev. 2, LTE CAT-11, GPS, mPCIe
Telit LE910C4-NF LTE CAT-4 mPCIe SIM
SIMCom SIM7912G LTE CAT-12 M.2
Telit LM960A18 LTE CAT-18 mPCIe
Telit LE910C1-EU LTE CAT-1 mPCIe SIM
Telit LE910C1-AP LTE CAT-1 mPCIe SIM
Telit LE910C1-NF LTE CAT-1 mPCIe
Telit LE910C4-AP LTE CAT-4 mPCIe SIM
Telit LE910C4-CN LTE CAT-4 mPCIe
SIMCom SIM7600V-H LTE CAT-4 M.2 Verizon
Sierra Wireless EM7411 NAM
Sierra Wireless MC7411 NAM
Sierra Wireless EM7421 EMEA/APAC
Sierra Wireless MC7421 EMEA/APAC
Sierra Wireless EM7431 Japan
Sierra Wireless MC7431 Japan
Huawei MS2372h-158 LTE USB Dongle EU
Huawei MS2372h-518 LTE USB Dongle US
Huawei MS2372h-608 LTE USB Dongle Asia
Sierra Wireless EM9190 5G NR M.2
Huawei ME909s-120p V2 mPCIe
Huawei ME909s-120 V2 LGA
Telit LE910C1-SA CAT-1 LGA
Telit LE910C1-NF S.SKU LTE CAT-1 mPCIe SIM
Sierra Wireless MC-WP7610 LTE CAT-4 mPCIe
SIMCom SIM7600G-H R2 mPCIe
SIMCom SIM7600NA-H mPCIe
Sierra Wireless EM9191 5G sub-6 M.2
Telit LE910C1-LA LTE CAT-1 mPCIe
Telit LE910C4-EU LTE CAT-4 LGA
Sierra Wireless EM7690 LTE CAT-20
Sierra Wireless EM7511 M.2
Telit LE910C1-EUX LTE CAT-1 mPCIe
SIMCom SIM7600G-H R2 LTE CAT-4 SMT
SIMCom SIM7600G R2 LTE CAT-1 SMT
SIMCom SIM7600SA LTE CAT-1 SMT
Alcatel IK41VE LTE USB Dongle EU
Alcatel IK41CQ LTE USB Dongle APAC
Alcatel IK41UD LTE USB Dongle LATAM
Alcatel IK41UC LTE USB Dongle NA
Question

Why does not our EM9190/EM9091/EM7690 appear in our system when connected to our host board?

Solution

The Sierra 5G (EM919x) modules and EM7690 has the PCIe host interface as default, as compared to the USB interface. This differs from most other modules on today's market and can be a reason as to why the module is not appearing in your system.

First, make sure that there are no pin-conflicts between the adapter/host board and the module. To avoid any incompatibilities we recommend the Sierra Wireless development Kit (11131)).

To change the host interface from PCIe to USB using the development kit please do the following;
Slide SW201 to the USB connector (CN204).
Change CN203 jumper from 2-3 to 1-2.

What happens when slide SW201 is switched is that pin #20 (PCIE_DIS) is set to high (1.8V) and selects USB as host interface. Changing the jumper on the CN203 sets pin #22 (VBUS_SENSE) to high (3.135 - 4.2 V) which is used to detect USB during USB connection.

This is further explained in the Sierra Development Kit User Guide and the EM919X-EM7690 Product Technical Specification. These documents are linked to this FAQ and can also be found on the product pages under the "technical documentation" tab.