SIMCom SIM7600G-H R2 LTE CAT-4 SMT is aLTE Cat-4 module which supports wireless communication modes of LTE-TDD/LTE-FDD/HSPA+/GSM/GPRS/EDGE etc. It supports maximum 150 Mbps downlink rate and 50 Mbps uplink rate.
The SIM7600G-H adopts LCC+LGA form and is compatible with SIM5320S/SIM5360 series (UMTS/HSPA+modules), and SIM7600/SIM7600-H series (LTE modules), which enables smooth migration from 3G products to LTE products, and greatly facilitates more compatible product design for the customer needs.
Simcom SIM7500 series and SIM7600 series AT commands manual
Simcom SIM7500 series and Simcom SIM7600 series AT commands manual
FCC certificate for SIMCom SIM7600G-H R2
Certification for SIMCom SIM7600G-H R2 CE(RED)
ROHS Certification for SIMCom SIM7600G-H R2
REACH Certification for SIMCom SIM7600G-H R2
Anatel Certification for SIMCom SIM7600G-H R2
GCF Certification for SIMCom SIM7600G-H R2
PTCRB Certification for SIMCom SIM7600G-H R2
IMDA Certification for SIMCom SIM7600G-H R2
US Cellular Certification for SIMCom SIM7600G-H R2
Telstra Certification for SIMCom SIM7600G-H R2
IC certificate for SIMCom SIM7600G-H R2
KC certificate and test report for SIMCom SIM7600G-H R2
RoHS & REACH certificate for SIMCom SIM7600G-H R2
Jate & Telec certificate for SIMCom SIM7600G-H R2
RCM certificate for SIMCom SIM7600G-H R2
CCC & SRRC certification for SIMCom SIM7600G-H R2
Microsoft Windows 7 desktop system or later
SIMCom Windows drivers installed
(Check during update that normal operational mode and firmware update mode drivers load properly in Windows device manager)
SIMCom module firmware update file
How-to automatically set up and maintain the cellular data connection in headless Raspberry Pi OS / Raspbian systems?
The open-source tools NetworkManager and ModemManager can be uesd to establish, control and maintain a cellular connection even if the enironment and antenna RF circumstances vary.
First ensure that the cellular module have been detected in the Raspbian system, and that Linux in-kernel driver alternatives have been loaded correctly for the USB interfaces.
This can be verified through different tools like lsusb and usb-devices, and by checking the dmesg log.
Look at the Driver output, serial interface typically use option or qcserial driver and the network interfaces typically bind to the qmi_wwan or cdc_mbim drivers.
The in-kernel drivers, as well as NetworkManager and ModemManager tools are continously improved, due to the rapid progress in wirelless connectivity. Therefore it is recommended to use fairly recent Linux kernel and distribution versions, which is more likely to have device support out of the box.
lsusb
Bus 001 Device 012: ID 1e0e:9001 Qualcomm / Option
lsusb -t
|__ Port 4: Dev 12, If 1, Class=Vendor Specific Class, Driver=option, 480M
|__ Port 4: Dev 12, If 4, Class=Vendor Specific Class, Driver=option, 480M
|__ Port 4: Dev 12, If 2, Class=Vendor Specific Class, Driver=option, 480M
|__ Port 4: Dev 12, If 0, Class=Vendor Specific Class, Driver=option, 480M
|__ Port 4: Dev 12, If 5, Class=Vendor Specific Class, Driver=qmi_wwan, 480M
|__ Port 4: Dev 12, If 3, Class=Vendor Specific Class, Driver=option, 480M
usb-devices
T: Bus=01 Lev=02 Prnt=02 Port=03 Cnt=02 Dev#= 12 Spd=480 MxCh= 0
D: Ver= 2.00 Cls=00(>ifc ) Sub=00 Prot=00 MxPS=64 #Cfgs= 1
P: Vendor=1e0e ProdID=9001 Rev=03.18
S: Manufacturer=SimTech, Incorporated
S: Product=SimTech, Incorporated
S: SerialNumber=0123456789ABCDEF
C: #Ifs= 6 Cfg#= 1 Atr=a0 MxPwr=500mA
I: If#=0x0 Alt= 0 #EPs= 2 Cls=ff(vend.) Sub=ff Prot=ff Driver=option
I: If#=0x1 Alt= 0 #EPs= 3 Cls=ff(vend.) Sub=00 Prot=00 Driver=option
I: If#=0x2 Alt= 0 #EPs= 3 Cls=ff(vend.) Sub=00 Prot=00 Driver=option
I: If#=0x3 Alt= 0 #EPs= 3 Cls=ff(vend.) Sub=00 Prot=00 Driver=option
I: If#=0x4 Alt= 0 #EPs= 3 Cls=ff(vend.) Sub=00 Prot=00 Driver=option
I: If#=0x5 Alt= 0 #EPs= 3 Cls=ff(vend.) Sub=ff Prot=ff Driver=qmi_wwan
If drivers aren't loaded for all the USB interfaces, please see the following general FAQ on kernel configs and patches for cellular modules.
FAQ: Common Linux kernel modules and configs necessary for communicating with cellular modules over USB interface
On Raspberry Pi OS / Raspbian uses dhcpcd to configure networks, this causes problems for several cellular devices, so it is recommended to exclude the cellular modules wwan interfaces, see following FAQ for how-to details:
FAQ: We cannot acquire an DHCP address over qmi_wwan driver when using Raspbian Linux OS?
Update the system and install NetworkManager and ModemManager:
apt update
apt upgrade
apt install network-manager modemmanager libmbim-utils libmbim-proxy libqmi-utils libqmi-proxy
Once they are installed and services running, set the cellular module to be a managed interface for NetworkManager.
(The control interface is typically called cdc-wdm0 for cellular devices using qmi_wwan / cdc_mbim driver.)
nmcli device set cdc-wdm0 managed true
Now you can go ahead and establish the cellular data connection as described in FAQ below:
FAQ: Using NetworkManager and ModemManager in Linux to automatically establish and maintain a connection
How-to guide: How can we control, configure and establish a simple data connection for a cellular module in Linux systems using the open source ModemManager tool for modem control and connection management.
ModemManager is a open source tool for Linux that can be used to communicate with cellular devices for configuration, status check, connection triggering etc. It is capable of communicate over several types of device control channels such as QMI/RMNET, MBIM, MODEM / AT command etc.
It is hosted by the Freedesktop.org community and driven by Aleksander Morgado and other contributors, please visit https://www.freedesktop.org/wiki/Software/ModemManager/ for latest information, source code, API reference manuals, debugging tips, contribution, mailing list etc.
Keep in mind that ModemManager is not directly developed or driven by cellular device vendors and the compatibility cannot be guaranteed for the specific device you aim to use. Some vendors contribute with code to make their devices fully compatible, while others don't. However many cellular devices can be set to expose standardized types of USB network interface and control channel such as MBIM interface by USB-IF or the Qualcomm proprietary interface QMI that ModemManager will try to identify, and often manage to work successfully with.
Before continuing with ModemManager, a good thing to ensure is that you have common Linux driver modules available in your kernel build.
You can compare your own systems kernel config with the ones listed in the following FAQ:
Common Linux kernel modules and configs necessary for communicating with cellular modules over USB interface
Selections of these are commonly used by cellular devices and need to be available in order to have device drivers correctly loaded when devices are detected.
Start by installing ModemManager and its dependencies to your Linux system.
You can build it from source code release tarball found at freedesktop.org (install instructions included in the archive)
If you have a package manager in your Linux distribution, it can usually be installed through them also.
E.g. on Ubuntu using apt to install it and related dependencies:
apt install modemmanager libmbim-utils libqmi-utils
Keep in mind that Linux distributions sometimes rely on fairly old releases in their repositories and the development of ModemManager, libqmi and libmbim are on-going continuously. So is also the development of the cellular devices when the cellular technologies evolve. It is therefore recommended that you have a fairly recent version of ModemManager, libqmi and libmbim running in your system as well as when it comes to kernel version since the driver modules sometimes acquire patch fixes to be compatible with new chipset features etc.
Check Freedesktop.org pages for details on the latest ModemManager, NetworkManager, Libqmi and Libmbim releases.
Once you've installed ModemManager and rebooted your system, the service daemon should be running already in background.
Mmcli is the related command line interface tool which can be used to interact with ModemManager daemon through command line commands.
Check the version by command:
mmcli -V
<< mmcli 1.13.0
<< Copyright (2011 - 2020) Aleksander Morgado
<< License GPLv2+: GNU GPL version 2 or later
<< This is free software: you are free to change and redistribute it.
<< There is NO WARRANTY, to the extent permitted by law.
Print general mmcli help message:
mmcli --help
ModemManager normally listen, probes and detects cellular devices automatically when operating correctly but a forced scan can be triggered with command:
mmcli --scan-modems
<< successfully requested to scan devices
To list detected cellular devices use command:
mmcli --list-modems
<< /org/freedesktop/ModemManager1/Modem/0 [Sierra Wireless, Incorporated] MC7455
Here ModemManager have detected a Sierra Wireless cellular device and it has here been given the the identifier number 0 by ModemManager.
To acquire more device information and status use the --modem command and identifier value.
mmcli --modem=0
<< -----------------------------
<< General | dbus path: /org/freedesktop/ModemManager1/Modem/0
<< | device id: 3a2f5fad8e91dbf417694f23165017c1f8a6e061
<< -----------------------------
<< Hardware | manufacturer: Sierra Wireless, Incorporated
<< | model: MC7455
<< | firmware revision: SWI9X30C_02.32.11.00 r8042 CARMD-EV-FRMWR2 2019/05/15 21:52:20
<< | carrier config: default
<< | h/w revision: 1.0
<< | supported: gsm-umts, lte
<< | current: gsm-umts, lte
<< | equipment id: 359072066171840
<< -----------------------------
<< System | device: /sys/devices/pci0000:00/0000:00:14.0/usb3/3-2
<< | drivers: qcserial, qmi_wwan
<< | plugin: sierra
<< | primary port: cdc-wdm0
<< | ports: cdc-wdm0 (qmi), wwan1 (net), ttyUSB2 (at), wwan0 (net),
<< | cdc-wdm1 (qmi), ttyUSB1 (gps), ttyUSB0 (qcdm)
<< -----------------------------
<< Status | lock: sim-pin
<< | unlock retries: sim-pin (3), sim-puk (10), sim-pin2 (0), sim-puk2 (10)
<< | state: locked
<< | power state: on
<< | signal quality: 0% (cached)
<< -----------------------------
<< Modes | supported: allowed: 3g; preferred: none
<< | allowed: 4g; preferred: none
<< | allowed: 3g, 4g; preferred: 4g
<< | allowed: 3g, 4g; preferred: 3g
<< | current: allowed: 3g, 4g; preferred: 4g
<< -----------------------------
<< Bands | supported: utran-1, utran-3, utran-4, utran-5, utran-8, utran-2,
<< | eutran-1, eutran-2, eutran-3, eutran-4, eutran-5, eutran-7, eutran-8,
<< | eutran-12, eutran-13, eutran-20, eutran-25, eutran-26, eutran-29,
<< | eutran-30, eutran-41
<< | current: utran-1, utran-3, utran-4, utran-5, utran-8, utran-2,
<< | eutran-1, eutran-2, eutran-3, eutran-4, eutran-5, eutran-7, eutran-8,
<< | eutran-12, eutran-13, eutran-20, eutran-25, eutran-26, eutran-29,
<< | eutran-30, eutran-41
<< -----------------------------
<< IP | supported: ipv4, ipv6, ipv4v6
<< -----------------------------
<< SIM | dbus path: /org/freedesktop/ModemManager1/SIM/0
A detailed summary of device status, configs and system drivers, paths and IDs are returned.
Currently the device status indicates that inserted SIM card is PIN locked, so a unlock by --pin command is necessary:
mmcli --modem=0 --sim=0 --pin=****
<< successfully sent PIN code to the SIM
Now we can change device state to enabled using command:
mmcli --modem=0 --enable
<< successfully enabled the modem
if we're check device status again we can see that device:
mmcli --modem=0
…
<< --------------------------------
<< Status | lock: sim-puk2
<< | unlock retries: sim-pin (3), sim-puk (10), sim-pin2 (0), sim-puk2 (10)
<< | state: registered
<< | power state: on
<< | access tech: lte
<< | signal quality: 96% (recent)
…
<< 3GPP | imei: 359072066171840
<< | operator id: 24002
<< | operator name: 3
<< | registration: home
<< --------------------------------
<< 3GPP EPS | ue mode of operation: csps-2
<< --------------------------------
<< SIM | dbus path: /org/freedesktop/ModemManager1/SIM/0
The status output shows that devices is registered in network using LTE technology with a good signal strength.
It is now time to activate the data connection with --simple-connect command.
ModemManager will tie the data bearer for our given subscription APN to the qmi_wwan network interface, typically named wwan0 (unless renamed by Linux distribution or user)
Fill in the details as below but for your modem number, subscription APN and the IP type it can work with (ipv4 / ipv6 ipv4v6)
mmcli -m 0 --simple-connect='apn=data.tre.se,ip-type=ipv4v6'
<< successfully connected the modem
if we check modem status again we can see that a bearer have been established.
mmcli --modem=0
…
<< --------------------------------
<< Bearer | dbus path: /org/freedesktop/ModemManager1/Bearer/0
…
The bearer have got identifier number 0 so we can request more details for it to acquire the IP details:
mmcli --modem=0 --bearer=0
<< ------------------------------------
<< General | dbus path: /org/freedesktop/ModemManager1/Bearer/0
<< | type: default
<< ------------------------------------
<< Status | connected: yes
<< | suspended: no
<< | interface: wwan1
<< | ip timeout: 20
<< ------------------------------------
<< Properties | apn: data.tre.se
<< | roaming: allowed
<< | ip type: ipv4v6
<< ------------------------------------
<< IPv4 configuration | method: static
<< | address: 2.68.206.100
<< | prefix: 29
<< | gateway: 2.68.206.101
<< | dns: 80.251.201.177, 80.251.201.178
<< | mtu: 1500
<< ------------------------------------
<< IPv6 configuration | method: static
<< | address: 2a02:aa1:1010:b6bb:6d12:d0dc:978e:3982
<< | prefix: 64
<< | gateway: 2a02:aa1:1010:b6bb:21ea:c721:62c3:9760
<< | dns: 2a02:aa0::55, 2a02:aa0::56
<< | mtu: 1500
<< ------------------------------------
<< Statistics | duration: 450
<< | bytes rx: 6693
<< | attempts: 1
<< | total-duration: 450
<< | total-bytes rx: 6693
From here we can see the IP details we've been assigned by the cellular network.
ModemManager does not assign IPv4 address details to the cellular modules network interface in Linux by itself.
When ModemManager is used in conjunction with NetworkManager and the cellular connection is managed by it, then the IPv4 address details will be collected by NetworkManager through ModemManager and automatically assigned to network interface when connection is established.
If the system does not implement NetworkManager, then the IP and routing configuration needs to be handled by user software/scripting.
Example:
Enable network interface in Linux:
ip link set wwan0 up
Set the IPv4 address acquired from bearer information above, the CIDR subnet mask can always be set to 32:
ip addr add 2.68.206.100/32 dev wwan0
Disable ARP:
ip link set dev wwan0 arp off
Set MTU value acquired from network:
ip link set dev wwan0 mtu 1500
Add a default or other type of route to the cellular network device (e.g. with a metric to set which route to prefer)
ip route add default dev wwan0 metric 200
Add the DNS servers reported by cellular network or use other public/desired ones.
DNS server addresses are handled in different ways depending on the Linux distribution and network manager used. Therefore please refer to related dist documentation for best practice to add / maintain DNS server addresses in your specific system.
sh -c "echo 'nameserver 80.251.201.177' >> /etc/resolv.conf"
sh -c "echo 'nameserver 80.251.201.178' >> /etc/resolv.conf"
We should now have a network interface passing data successfully, we can try it out by doing ping requests:
IPv4 data:
ping -4 -c 4 -I wwan0 8.8.8.8
PING 8.8.8.8 (8.8.8.8) from 2.68.206.100 wwan0: 56(84) bytes of data.
64 bytes from 8.8.8.8: icmp_seq=1 ttl=57 time=50.8 ms
64 bytes from 8.8.8.8: icmp_seq=2 ttl=57 time=48.8 ms
64 bytes from 8.8.8.8: icmp_seq=3 ttl=57 time=24.0 ms
64 bytes from 8.8.8.8: icmp_seq=4 ttl=57 time=44.8 ms
--- 8.8.8.8 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3005ms
rtt min/avg/max/mdev = 23.979/42.115/50.840/10.694 ms
IPv6 data:
ping -6 -c 4 -I wwan0 2600::
PING 2600::(2600::) from 2a02:aa1:1010:b6bb:8962:7405:b81c:7627 wwan0: 56 data bytes
64 bytes from 2600::: icmp_seq=1 ttl=47 time=179 ms
64 bytes from 2600::: icmp_seq=2 ttl=47 time=176 ms
64 bytes from 2600::: icmp_seq=3 ttl=47 time=175 ms
64 bytes from 2600::: icmp_seq=4 ttl=47 time=177 ms
--- 2600:: ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3004ms
rtt min/avg/max/mdev = 175.411/176.935/179.268/1.446 ms
How to use NetworkManager and ModemManager in Linux to automatically establish a cellular data connection and configure IP details?
Using NetworkManager and ModemManager in Linux to automatically establish a connection and configure IP details
In this FAQ we will show how to set up NetworkManager to automatically configure, establish the cellular data connection in your system.
NetworkManager and ModemManager are open source tool for Linux to manage several types of networks and interfaces such as ethernet, wifi, etc. It can also manage cellular WWAN interfaces through the ModemManager tool.
It is hosted by the Freedesktop.org community and driven by Aleksander Morgado and other contributors. please visit https://wiki.gnome.org/Projects/NetworkManager and https://www.freedesktop.org/wiki/Software/ModemManager/ for latest information, source code, API reference manuals, debugging tips, contribution, mailing list etc.
ModemManager is capable of communicating over several types of device control channels such as QMI/RMNET, MBIM, MODEM / AT command etc. But support for vendor proprietary or out-of-kernel drivers are none or very limited. Such drivers are gobinet, simcom_wwan and other drivers provided by the vendors directly.
Many Linux distributions have NetworkManager and ModemManager pre-installed or they can typically easily be installed through the systems package manager.
In Ubuntu for example apt can install it for you by command if not already installed:
apt install network-manager
Check with commands below that you have both tools installed in system and their versions.
NetworkManager -V
ModemManager -V
ModemManager (and NetworkManager) are continuously developed for better compatibility with the cellular devices, therefore it is recommend to use a recent version of the tools and in case of problem situations, evaluate the latest versions from source and check the mailing list archives for possible discussions on the problem experienced.
Keep in mind that NetworkManager and ModemManager projects are not directly developed or driven by the cellular device vendors and the compatibility with the device you aim to use can be limited. Some vendors contribute with code to make their devices fully compatible, while others don't. Many cellular devices can be set to expose standardized types of USB network interface and control channel such as MBIM interface by USB-IF or the Qualcomm proprietary interface QMI that ModemManager will try to identify, and often manage to work successfully with but there are exceptions also.
Both NetworkManager and ModemManager have command line interfaces (nmcli and mmcli respectively) where you can interact with the management tools.
Relate to the following FAQ if you want more details for using ModemManager only to configure and control the cellular device but manually establish, maintain the connection and network interface IP address details.
How-to guide: control and set up a data connection in Linux using ModemManager as connection manager?
Have ModemManager list all the cellular device it has detected. Here we use the Alcatel IK41 series with MBIM interface in this example:
mmcli --list-modems
/org/freedesktop/ModemManager1/Modem/0 [Alcatel] Mobilebroadband
General details and status of them modem can be listed with "--modem" option.
mmcli --modem=0
-----------------------------
General | dbus path: /org/freedesktop/ModemManager1/Modem/0
| device id: 998e478c5b14c75e16bffe6abaacabef22fb2f5b
-----------------------------
Hardware | manufacturer: Alcatel
| model: Mobilebroadband
| firmware revision: MPSS.JO.2.0.2.c1.7-00004-9607_
| carrier config: default
| h/w revision: 0
| supported: gsm-umts, lte
| current: gsm-umts, lte
| equipment id:
-----------------------------
System | device: /sys/devices/pci0000:00/0000:00:14.0/usb3/3-1
| drivers: option1, cdc_mbim
| plugin: Generic
| primary port: cdc-wdm0
| ports: cdc-wdm0 (mbim), ttyUSB0 (at), ttyUSB2 (at), wwan0 (net),
| ttyUSB1 (qcdm)
-----------------------------
Status | lock: sim-pin
| unlock retries: sim-pin (3)
| state: locked
| power state: on
| signal quality: 0% (cached)
-----------------------------
Modes | supported: allowed: 2g; preferred: none
| allowed: 3g; preferred: none
| allowed: 4g; preferred: none
| allowed: 2g, 3g; preferred: 3g
| allowed: 2g, 3g; preferred: 2g
| allowed: 2g, 4g; preferred: 4g
| allowed: 2g, 4g; preferred: 2g
| allowed: 3g, 4g; preferred: 3g
| allowed: 3g, 4g; preferred: 4g
| allowed: 2g, 3g, 4g; preferred: 4g
| allowed: 2g, 3g, 4g; preferred: 3g
| allowed: 2g, 3g, 4g; preferred: 2g
| current: allowed: 2g, 3g, 4g; preferred: 2g
-----------------------------
Bands | supported: egsm, dcs, pcs, g850, utran-1, utran-8, eutran-1, eutran-3,
| eutran-7, eutran-8, eutran-20, eutran-28
| current: egsm, dcs, pcs, g850, utran-1, utran-8, eutran-1, eutran-3,
| eutran-7, eutran-8, eutran-20, eutran-28
-----------------------------
IP | supported: ipv4, ipv6, ipv4v6
-----------------------------
SIM | dbus path: /org/freedesktop/ModemManager1/SIM/0
Check that the cellular device is managed by NetworkManager by not having state "unmanaged" listed for it.
nmcli device status
DEVICE TYPE STATE CONNECTION
cdc-wdm0 gsm disconnected --
enp3s0 ethernet unmanaged --
lo loopback unmanaged --
Now you should create a connection profile in NetworkManager for your specific network carrier and SIM card with the "nmcli connection add" command:
For example:
nmcli connection add type gsm ifname '*' con-name '3-sweden' apn 'data.tre.se' connection.autoconnect yes gsm.pin 0000
- type is gsm for all typical cellular connections unless it is of cdma type.
- ifname is the control interface name, in this case cdc-wdm0, wildcard can be used also to have it autoselect.
- con-name is the profile name you want to give it.
- apn is provided by your network carrier and tells the modem what attach point it should use for the data connection.
- connection.autoconnect set to yes will make NetworkManager always try to auto connect and maintain this profile connection.
- gsm.pin lets you provide a pin code for the SIM card, that NetworkManager will try to use if PIN check is enabled for SIM card.
There are several additional commands and attributes available such as username and password settings for the APNs etc. Refer to the NetworkManager help and manual pages for full details on the commands.
If successful you should receive a reply similar to this one:
Connection '3-sweden' (cad6fcbf-2cb1-4796-b7e6-67b9f9635aef) successfully added.
You can check the status now by command:
nmcli device status
DEVICE TYPE STATE CONNECTION
cdc-wdm0 gsm connected 3-sweden
enp3s0 ethernet unmanaged --
lo loopback unmanaged --
Where connected should be listed as state if the connection establishment was successful.
If the connection is not successful or you want more details about the device and connection you can check commands:
You can list the current status with command:
nmcli radio
WIFI-HW WIFI WWAN-HW WWAN
enabled enabled enabled enabled
nmcli device show cdc-wdm
GENERAL.DEVICE: cdc-wdm0
GENERAL.TYPE: gsm
GENERAL.HWADDR: (unknown)
GENERAL.MTU: 1500
GENERAL.STATE: 100 (connected)
GENERAL.CONNECTION: 3-sweden
GENERAL.CON-PATH: /org/freedesktop/NetworkManager/ActiveConnection/18
IP4.ADDRESS[1]: 2.68.73.130/30
IP4.GATEWAY: 2.68.73.129
IP4.ROUTE[1]: dst = 2.68.73.128/30, nh = 0.0.0.0, mt = 700
IP4.ROUTE[2]: dst = 0.0.0.0/0, nh = 2.68.73.129, mt = 700
IP4.DNS[1]: 80.251.201.177
IP4.DNS[2]: 80.251.201.178
IP6.ADDRESS[1]: 2a02:aa1:1017:6d11:1060:3dff:feac:e92f/64
IP6.ADDRESS[2]: 2a02:aa1:1017:6d11:6474:7254:7b72:eb09/64
IP6.GATEWAY: 2a02:aa1:1017:6d11:21e6:9049:6cfb:8ac3
IP6.ROUTE[1]: dst = ff00::/8, nh = ::, mt = 256, table=255
IP6.ROUTE[2]: dst = 2a02:aa1:1017:6d11::/64, nh = ::, mt = 700
IP6.ROUTE[3]: dst = ::/0, nh = fe80::21e6:9049:6cfb:8ac3, mt = 1024
IP6.ROUTE[4]: dst = 2a02:aa1:1017:6d11::/64, nh = ::, mt = 256
IP6.ROUTE[5]: dst = ::/0, nh = 2a02:aa1:1017:6d11:21e6:9049:6cfb:8ac3, mt = 700
IP6.DNS[1]: 2a02:aa0::55
IP6.DNS[2]: 2a02:aa0::56
nmcli connection show
NAME UUID TYPE DEVICE
3-sweden e946017f-2e9c-477b-89ad-4c31e7331d65 gsm cdc-wdm0
Ifconfig should now show the related IP address details already set to the network interface by NetworkManager:
ifconfig
wwan0: flags=4291 mtu 1500
inet 2.68.73.130 netmask 255.255.255.252 broadcast 2.68.73.131
inet6 2a02:aa1:1017:6d11:6474:7254:7b72:eb09 prefixlen 64 scopeid 0x0
inet6 2a02:aa1:1017:6d11:1060:3dff:feac:e92f prefixlen 64 scopeid 0x0
ether 12:60:3d:ac:e9:2f txqueuelen 1000 (Ethernet)
RX packets 186 bytes 10886 (10.8 KB)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 5 bytes 480 (480.0 B)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
You can now for example test the connection over the network interface by sending ping requests.
Testing IPV4 connection:
ping -4 -I wwan0 8.8.8.8
PING 8.8.8.8 (8.8.8.8) from 2.68.73.130 wwan0: 56(84) bytes of data.
64 bytes from 8.8.8.8: icmp_seq=1 ttl=118 time=55.8 ms
64 bytes from 8.8.8.8: icmp_seq=2 ttl=118 time=45.4 ms
64 bytes from 8.8.8.8: icmp_seq=3 ttl=118 time=42.9 ms
--- 8.8.8.8 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2003ms
rtt min/avg/max/mdev = 42.918/48.053/55.845/5.601 ms
Testing IPV6 connection: (if your cellular device, network subscription and APN supports it)
ping -6 -I wwan0 2600::
PING 2600::(2600::) from 2a02:aa1:1017:6d11:1060:3dff:feac:e92f wwan0: 56 data bytes
64 bytes from 2600::: icmp_seq=1 ttl=46 time=172 ms
64 bytes from 2600::: icmp_seq=2 ttl=46 time=171 ms
64 bytes from 2600::: icmp_seq=3 ttl=46 time=169 ms
64 bytes from 2600::: icmp_seq=4 ttl=46 time=168 ms
--- 2600:: ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3004ms
rtt min/avg/max/mdev = 167.921/170.037/172.272/1.651 ms
The connection is successful and automatic reconnect is working when testing to unplug and plug in the device again.
For additional configurations, commands and available attributes, please relate to the manual pages for NetworkManager and ModemManager.
Troubleshooting logs:
NetworkManager and ModemManager write log messages to the Linux syslog file /var/log/syslog.
In case of problems with establishing a cellular data connection, please copy the logfile after the problem have appeared and include it in a Techship technical support ticket.
In some situations more detailed debug logs are needed, these can be acquired by changing the log levels for NetworkManager and ModemManager and run them manually.
To capture debug logs, please first disable and stop the normal services:
systemctl stop NetworkManager ModemManager
systemctl disable NetworkManager ModemManager
Run them manually in background with debug level set:
/usr/sbin/ModemManager --log-level=DEBUG &> /dev/null &
/usr/sbin/NetworkManager --log-level=DEBUG &
Reproduce the cellular data connection problem.
Once completed, kill the processes:
killall -TERM NetworkManager ModemManager
Copy the relate messages in syslog to a mm-nm-sys-debug.log logfile:
grep -E 'ModemManager|NetworkManager|systemd|dbus-daemon|dhclient' /var/log/syslog > mm-nm-sys-debug.log
Activate and start the services again:
systemctl enable NetworkManager ModemManager
systemctl start NetworkManager ModemManager
Include the mm-nm-sys-debug.log in a technical support ticket at Techship.com where you describe the issue in details and include other relevant information also such as kernel version, ModemManager and NetworkManager versions, dmesg log etc.
How-to use the SIM7600 series modules in RNDIS USB mode with automatic connection management
Both Windows and Linux systems can support RNDIS interface drivers for the SIM7600 series modules, this example demonstrates how it can be done in a Linux environment.
There is a open source Linux in-kernel driver supporting RNDIS USB network interfaces called rndis_host.
Make sure to have the kernel config for rndis host driver support enabled.
Read more about the kernel configs in this FAQ:
Common Linux kernel modules and configs necessary for communicating with cellular modules over USB interface
By default the Simcom modules are delivered with QMI/RMNET network interface enabled, so you will need to change the USB mode by AT commands on the Modem/AT serial ports exposed over the USB interface.
lsusb
Bus 001 Device 006: ID 1e0e:9001 Qualcomm / Option
Switch the module from USB PID 9001 to USB PID 9011 mode for RNDIS interface:
AT+CUSBPIDSWITCH=9011,1,1
The module will now restart automatically and re-enumerate with a new USB ID.
Check dmesg or with lsusb that you have the Simcom SIM7600 module detected with, VID: 1e0e PID: 9011
lsusb
Bus 001 Device 006: ID 1e0e:9011 Qualcomm / Option
Verify with lsusb -t that the Linux in-kernel driver rndis_host driver is loaded correctly for interface 0 and 1.
It can look e.g. like this:
lsusb -t
/: Bus 01.Port 1: Dev 1, Class=root_hub, Driver=xhci_hcd/8p, 480M
|__ Port 4: Dev 6, If 3, Class=Vendor Specific Class, Driver=option, 480M
|__ Port 4: Dev 6, If 1, Class=CDC Data, Driver=rndis_host, 480M
|__ Port 4: Dev 6, If 6, Class=Vendor Specific Class, Driver=option, 480M
|__ Port 4: Dev 6, If 4, Class=Vendor Specific Class, Driver=option, 480M
|__ Port 4: Dev 6, If 2, Class=Vendor Specific Class, Driver=option, 480M
|__ Port 4: Dev 6, If 0, Class=Communications, Driver=rndis_host, 480M
|__ Port 4: Dev 6, If 5, Class=Vendor Specific Class, Driver=option, 480M
If your system don't load the option serial interfaces correctly, then they can be forcefully loaded as bellow:
modprobe option
echo 1e0e 9011 > /sys/bus/usb-serial/drivers/option1/new_id
Relate to the following Linux kernel commit for details on how to modify the usb serial option driver source code in order to auto load the drivers:
USB: serial: option: add support for Simcom SIM7500/SIM7600 RNDIS mode
You should now have the Linux system drivers ready for usage, and a rndis network interface visible (typically named usb0). The host system have a DHCP client active on the network interface. Module will delegate a Network Address Translated (NAT) IP to the Linux host system.
Example:
dhclient -v usb0
Listening on LPF/usb0/4a:de:a7:7e:46:07
Sending on LPF/usb0/4a:de:a7:7e:46:07
Sending on Socket/fallback
DHCPREQUEST of 192.168.225.46 on usb0 to 255.255.255.255 port 67 (xid=0xaabce35)
DHCPACK of 192.168.225.46 from 192.168.225.1
RTNETLINK answers: File exists
bound to 192.168.225.46 -- renewal in 21475 seconds.
In order to enable the automatic network connection establishment, the SIM card should have PIN code check disabled. If it isn't disabled, the Linux host system need to provide the PIN code to module after each modem restart.
Refer to AT command: AT+CPIN=xxxx for further details.
The Access Point Name (APN) related to your cellular subscription needs to be configured once to the module so the automatic connection establishment can be established on the correct data bearer.
Defining an empty string as value on the AT+CGDCONT profile, will make the module try to subscribe for a APN, however this may not always work e.g. in roaming conditions, so best procedure is to always configure the correct ones for the network and your subscription.
Check the currently configured APN profiles:
AT+CGDCONT?
You should have at least profile 1 and 6 defined to empty strings to enable subscribe of the APN details: AT+CGDCONT=1,"IPV4V6",""
AT+CGDCONT=6,"IPV4V6",""
+CGDCONT Profile 1 is used for the cellular network registration process and APN at profile 6 will be tied to the RNDIS network interface for data connection.
Define both APN profiles according to the details you have obtained for your cellular subscription. Most often the APN details are same for both network registration and the actual data connection, then you define same details to both profile 1 and 6:
AT+CGDCONT=1,"IPV4V6","MY-SUBSCRIPTION-APN"
AT+CGDCONT=6,"IPV4V6","MY-SUBSCRIPTION-APN"
Some APN names require additional authentication also, please refer to the AT command: AT+CGAUTH in the AT commands guide for details on how to define auth details correctly.
Current auth configurations can be checked with AT command:
AT+CGAUTH?
Most often no auth details are needed for the profiles and they should be empty, profiles can be cleared by defining the profile number in question and zero in the second parameter:
AT+CGAUTH=1,0
AT+CGAUTH=6,0
If you have modified the APN information, username and passwords it is necessary to disconnect and reconnect to cellular network and packet data service to activate the new settings.
It can easily be done with AT+CFUN=0 command followed by AT+CFUN=1 to switch module operation mode (SIM card will also be re-initialized, so PIN code have to be given again if the PIN code check is activated).
The module will now try to establish and maintain the data connection automatically with the new settings.
If everything was configured correctly and the connection established successfully on the APN, the host system will have network access on the RNDIS network interface:
It can be tested e.g. by pinging a remote host over the RNDIS network interface:
ping -I usb0 8.8.8.8
PING 8.8.8.8 (8.8.8.8) from 192.168.225.46 usb0: 56(84) bytes of data.
64 bytes from 8.8.8.8: icmp_seq=1 ttl=52 time=167 ms
64 bytes from 8.8.8.8: icmp_seq=2 ttl=52 time=37.6 ms
64 bytes from 8.8.8.8: icmp_seq=3 ttl=52 time=44.4 ms
64 bytes from 8.8.8.8: icmp_seq=4 ttl=52 time=33.6 ms
--- 8.8.8.8 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 8ms
rtt min/avg/max/mdev = 33.600/70.635/166.972/55.753 ms
Tested on:
SIM7600E-H/SIM7600SA-H with firmware release LE11B12SIM7600M22.
SIM7600G-H with firmware release LE20B01SIM7600M22.