Cellular Modules LTE CAT 1-4 LTE Mini PCI Express


Article Number: 10813
Supplier number: S2-107KV-Z1W4D

The SIMCom SIM7600SA is Multi-Band LTE-TDD/LTE-FDD module solution in a mPCIe form factor. SIM7600SA is a LTE CAT-1 module with support of up to 10Mbps downlink data transfer intended for the Australian, New Zealand and South American markets.

With abundant application capability like TCP/UDP/FTP/FTPS/HTTP/HTTPS/DNS, the module provides much flexibility and ease of integration for customer's application

Quantity Sample Price
≥ 1 $43.90
≥ 1 €40.40

For larger quantities and complete pricing, please sign in or register

Do you need offline data on this product?

Download datasheet

Subscribe to stay up to date with the latest about this product.

Subscribe to updates
UMTS Bands
B1 (2100)
B2 (1900)
B8 (900)
B5 (850)
MIMO (Multiple-Input Multiple-Output)
LTE Bands
B1 (2100)
B2 (1900)
B3 (1800)
B4 (AWS)
B7 (2600)
B8 (900)
B5 (850)
B40 (TDD 2300)
B28 (700 APAC)
B5 (850)
B8 (900)
B3 (1800)
B2 (1900)
LTE Region
South America
FOTA Firmware Updates
Form Factor
mPCIe - full size
LTE - cat 1
Antenna Interface
GNSS technology
Max DL Speed
10 Mbps
Max UL Speed
5 Mbps
Operating Temperature Range
-40 °C – 85 °C
Driver Support
Windows 7
Windows 8
Windows 8.1
Windows 10
USB 2.0
Voice Call Support
GNSS antenna support
SIM interface
Through miniPCIe connector
Extended Operating Temperature Range
-40 °C – 85 °C
Audio interface
Digital PCM signal input/output in socket
Digital PCM signal over USB interface
Technical details:
For details on the firmware version related to the manufacturers product number and SKU/BOM codes, please check supplier number found on top of this product page to the comparison chart found in the following FAQ:
SKU/BOM code vs. firmware version comparison chart

Do you need a specific firmware version or SKU/BOM for this product?
Please contact the Techship sales team for additional details on availability and firmware flashing possibilities.

Datasheet for SIMCom SIM7600 CAT-1 Series on mPCIe card


Uploaded at
2018-09-20 14:22:54
Last updated
2018-12-03 11:57:40
Related products

This document describes the electronic specifications, RF specifications, interfaces, mechanical characteristics and testing results of the SIMCom SIM7600E and SIM7600E-H module. With the help of this document and other software application notes/user guides, users can understand and use module to design and develop applications quickly.


This archive contains the SIMCOM:
SIM7X00 Series_GPIO_Application Note_V1.00.pdf
SIM7X00 Series_GPS_Application Note_V1.00.pdf
SIM7X00 Series_SAT_Application Note_V1.00.pdf
SIM7X00 Series_Sleep Mode_Application Note_V1.00.pdf
SIM7X00 Series_SMS_Application Note_V1.00.pdf
SIM7X00 Series_TCPIP_Application Note_V1.00.pdf
SIM7X00 Series_UART_Application Note_V1.00.pdf
SIM7100_SIM7500_SIM7600 Series_LBS_Application Note_V1.00.pdf
SIM7100_SIM7500_SIM7600 Series_UIM HOT SWAP_Application Note_V1.01.pdf
SIM7100_SIM7500_SIM7600 Series_USB AUDIO_Application Note_V1.03.pdf
SIM7100_SIM7600M22 Series_TTS_Application Note_V1.02.pdf
SIM7500_SIM7600 Series_Compatibility_With_SIM800_HTTP_ATC_V1.00.pdf
SIM7500_SIM7600 Series_MQTT_ATC_V1.01.pdf
SIM7600 Hardware Design Notice V1.02.pdf
SIM7600 Series_HSIC_LAN_Application_Note_V1.00.pdf
SIM7600M22_MIFI_Application Note_V1.00.pdf
SIM7600M22_MIFI_RTL_Application Note_V1.00.pdf


SIM7600SA Telstra Certificate 2018


Uploaded at
2019-01-10 10:31:28
Last updated
2019-01-10 10:32:29
Related products

This archive contains the Simcom SIM7600E-H and SIM7600SA-H variants firmware LE11B09SIM7600M22 update archive and related release notes.

It is not applicable for the other variants such as SIM7600A-H or SIM7600V-H for North American market.



How-to use automated connection establishment with SIM7600E-h when using RNDIS USB mode


Both Windows and Linux systems can support RNDIS host drivers for the SIM7600 series modules, this example is done in Linux. There is a open source Linux in-kernel driver supporting rndis host USB endpoints called rndis_host.

By default the Simcom modules are delivered with QMI/RMNET interface enabled, so you will have to change the default USB mode with AT command on the Modem/AT serial ports available over USB.
Bus 001 Device 006: ID 1e0e:9001 Qualcomm / Option

Switch from 9001 to mode 9011 for RNDIS:
The module should restart automatically and re-enumerate with the new USB IDs
Check with lsusb that you have the Simcom SIM7600 module loaded, VID PID value: 1e0e 9011
Bus 001 Device 006: ID 1e0e:9011 Qualcomm / Option

Verify with lsusb -t that the Linux in-kernel driver rndis_host or cdc-ecm drivers are loaded correctly for interface 0 and 1.
It can look e.g. like this:
lsusb -t

/: Bus 01.Port 1: Dev 1, Class=root_hub, Driver=xhci_hcd/8p, 480M
|__ Port 4: Dev 6, If 3, Class=Vendor Specific Class, Driver=option, 480M
|__ Port 4: Dev 6, If 1, Class=CDC Data, Driver=rndis_host, 480M
|__ Port 4: Dev 6, If 6, Class=Vendor Specific Class, Driver=option, 480M
|__ Port 4: Dev 6, If 4, Class=Vendor Specific Class, Driver=option, 480M
|__ Port 4: Dev 6, If 2, Class=Vendor Specific Class, Driver=option, 480M
|__ Port 4: Dev 6, If 0, Class=Communications, Driver=rndis_host, 480M
|__ Port 4: Dev 6, If 5, Class=Vendor Specific Class, Driver=option, 480M

If your system don't load the option serial interfaces correctly, then they can be forcefully loaded as bellow:
modprobe option
echo 1e0e 9011 > /sys/bus/usb-serial/drivers/option1/new_id

For the modules network connection and interface to automatically activate you should have the SIM PIN deactivated or script it so host system provides it to module at every startup.

A APN name provided by the network carrier which is used to establish a packet data connection to the cellular network is required. If you define a empty string as its default value, will make the module try to subscribe for correct APN name from network, however this works in many cases but not always. If so it has to be configured with commands as bellow:

Check configured APN profiles:
You should have minimum the following defined to have module try request details from cellular network:
+CGDCONT Profile 1 is used for cellular network registration and profile 6 for the RNDIS network interface data connection.

Define both APN profiles according to the details you have obtained with your cellular subscription. Most often the APN details are same for both registration and data connection, define them to profile 1 and 6.

Some APN names require additional authentication also, please refer to the AT command: AT+CGAUTH in the AT commands guide on how to define it correctly. Current auth configurations can be checked with command:
Most often no auth details are needed for the profiles and they should be empty, profile 1 can be cleared with command:

If you have modified the APN information, username and passwords it is needed to re-attach to the packet switched network or re-register in the cellular network to activate the new settings. It can be done e.g. with AT+CFUN=0 command followed by AT+CFUN=1 to switch module operation mode (SIM card will be re-initialized also so PIN code have to be given again if PIN check activated).

The module will now establish the data connection according to the new settings.

If everything is working correctly and connection established you can now run a dhcp client on the network interface.
dhclient -v usb0
Listening on LPF/usb0/4a:de:a7:7e:46:07
Sending on LPF/usb0/4a:de:a7:7e:46:07
Sending on Socket/fallback
DHCPREQUEST of on usb0 to port 67 (xid=0xaabce35)
DHCPACK of from
RTNETLINK answers: File exists
bound to -- renewal in 21475 seconds.

ping -I usb0
PING ( from usb0: 56(84) bytes of data.
64 bytes from icmp_seq=1 ttl=52 time=167 ms
64 bytes from icmp_seq=2 ttl=52 time=37.6 ms
64 bytes from icmp_seq=3 ttl=52 time=44.4 ms
64 bytes from icmp_seq=4 ttl=52 time=33.6 ms

--- ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 8ms
rtt min/avg/max/mdev = 33.600/70.635/166.972/55.753 ms

Tested on firmware release LE11B12SIM7600M22


Useful Linux kernel configs to have enableb when integrating cellular modules in the Linux kernel


Most cellular modules can be supported in Linux by using som of the in-kernel drivers. The physical data interface to the host Linux system is usually done over USB which enumerates a set of different endpoints/interfaces. A set of serial interfaces for Modem/PPP, AT commands, NMEA location data and chipset debug information are almost always available in all configurations.

In addition some type of network endpoint/interface are also available and exposed. This can vary between manufacturers and chipset vendors and can also commonly be configurable by using USB configuration mode switching or through vendor specific AT commands.

Recommended kernel configurations to enable either as part of kernel or modules are listed bellow. Many cellular modules base their Linux support on these, either supported out-of-the-box or by applying source code modifications to them.

Configs for USB serial drivers:

Configs for Modem/PPP support:

Configs for USB network drivers:

Please relate to our product specific web pages for vendor details on Linux integration.


How to collect initial diagnostics data and logs for Simcom cellular modules, needed when requesting Techship technical support?


In order to troubleshoot and solve a technical problem, we ask you to please provide information about your system and logs from the related Simcom module when creating a technical support ticket.

Problem description of what exact problem is and in what precise situations present.

Describe the host system:
-Hardware (system board, peripherals...)
-Operating system and detailed versions (E.g. Windows, Linux release, kernel...)
-Drivers and driver versions

Identify the precise details of cellular module found on label:
-SKU/BOM or P/N code
(For RMA returns the IMEI number is mandatory)

If you are running on a Linux based system, please capture the terminal logs bellow:
uname -a
lsusb -t
ifconfig -a
ls -l /dev/serial/by-id
ls -l /sys/bus/usb-serial/devices

The logs from the cellular module firmware can be acquired by accessing the USB enumerated serial (COM) interfaces accepting AT commands. They can be named modem, AT, PC UI etc. (In Windows device manager, found under modem or serial interfaces). Send the following AT commands bellow to module and capture the output and include them when creating the the technical support ticket.

Test that you get a reply with command:
Command echo enabled:
Basic module info:
Detailed module version info:
Verbose error reporting:
Last error report:
Module model:
Firmware version:
IMEI Code:
USB endpoint configuration:
List current configuration:
Operational mode:
Pin status:
Request UE system info:
Preferred network mode:
Preferred band selection:
Preferred acquisition order:
List network operator info:
Network registration status:
Network EPS registration status:
Signal strength:
Packet domain attach status
List APN details/PDP profiles:
PDP profiles attach status:
Show PDP IP address:
RM network interface status:

The support ticket can be created after login at:


How to step by step set up a data connection over QMI interface using qmicli and in-kernel driver qmi_wwan in Linux?


Several cellular modules based on Qualcomm chipsets implements the Qualcomm Qualcomm MSM (QMI) Interface.
There is a open source Linux in-kernel driver supporting this interface and it is called qmi_wwan. The library libqmi can be used to communicate with the cellular devices over the interface and do necessary configurations to trigger the data connection over the cellular network.

Sierra Wireless MC74**/EM74** series: requires RAW-IP configuration.
Sierra Wireless EM75** series: requires RAW-IP configuration.
Telit LM940: requires RAW-IP configuration.
Telit LN94x series: requires RAW-IP configuration.
Simcom SIM7500/SIM7600/SIM7600*-H series: requires RAW-IP configuration (supported in qmi_wwan driver kernel 4.18+).
Simcom SIM7100 series: 802.3 IP framing supported.
Sierra Wireless MC73**/EM73** series: 802.3 IP framing supported.

First install the libqmi Linux library e.g. by using your system package manager like apt etc. (more details about libqmi here:

Verify that you have the Linux in-kernel qmi_wwan driver installed for the cellular modules exposed QMI interface endpoint over USB:
lsusb -t
Can look e.g. like this:
|__ Port 1: Dev 3, If 2, Class=Vendor Specific Class, Driver=qmi_wwan, 480M

If the driver is not correctly loaded, please verify that the module is set to expose the correct USB endpoints configuration toward the host system and that you have followed the provided guides from the cellular module vendors, regarding how to implement the module in Linux.

Libqmi expose a command line interface that can be used to communication with the module over QMI interface.
The qmicli help will output information about all commands available:
qmicli --help-all

The cellular modules QMI control interface are usually named cdc-wdm* e.g.:
qmicli --device=/dev/cdc-wdm0

In order to allow parallel commands to be execute on the module over QMI interface, it is recommended to use the libqmi proxy function. This can be done by including the attribute -p or --device-open-proxy in every qmicli command.

If a SIM pin is required for the SIM card, use command bellow:
qmicli --device=/dev/cdc-wdm0 -p --dms-uim-verify-pin=PIN,1234

The name of the related network interface to QMI control channel can be acquired with the command:
qmicli --device=/dev/cdc-wdm0 --device-open-proxy --get-wwan-iface

The most recent Qualcomm based cellular modules only expose QMI interfaces that can support Raw-IP mode. Sierra Wireless EM/MC74 and EM75 series modules, Telit LM940 and LN940 series for example require this.
Check what IP-mode the host system is configured for:
qmicli --device=/dev/cdc-wdm0 --get-expected-data-format
Check what IP-mode the cellular module require:
qmicli --device=/dev/cdc-wdm0 --device-open-proxy --wda-get-data-format

to change qmi_wwan driver to use Raw-IP.
Disable the network interfaces exposed by the cellular module:
ip link set dev wwan0 down
Trigger the Raw-IP support:
echo Y > /sys/class/net/wwan0/qmi/raw_ip
Enable the network interfaces again:
ip link set dev wwan0 up

Now the data connection in the cellular module can be activated e.g. with a IPv4 type configuration on the specified APN:
qmicli --device=/dev/cdc-wdm0 --device-open-proxy --wds-start-network="ip-type=4," --client-no-release-cid

Once "Network started" is displayed, you can send a DHCP request on the network interface.
Please note that not all DHCP clients in Linux can support Raw-IP format, udhcpc however support this for IPv4 over Raw-IP.
udhcpc -q -f -n -i wwan0

Disconnect the data bearer and data connection over QMI by command bellow and providing the network handle and CID returned at connection activation:
qmicli --device=/dev/cdc-wdm0 --device-open-proxy --wds-stop-network=NETWORK_HANDLE --client-cid=CID

Additional useful commands:

Request module manufacturer:
qmicli --device=/dev/cdc-wdm0 --device-open-proxy --dms-get-manufacturer

Get module model:
qmicli --device=/dev/cdc-wdm0 --device-open-proxy --dms-get-model

Get firmware version:
qmicli --device=/dev/cdc-wdm0 --device-open-proxy --dms-get-revision

Get module IDs (IMEI etc.):
qmicli --device=/dev/cdc-wdm0 --device-open-proxy --dms-get-ids

Get SIM card status:
qmicli --device=/dev/cdc-wdm0 --device-open-proxy --uim-get-card-status

Recent cellular modules like Sierra Wireless EM7565 require at least libqmi V1.20. Check version with command:
qmicli --version

If the connection was successfully set up established, you now have data connectivity. A ping to a remote server using the cellular network interface can for example prove this:
ping -I wwan0

The ifconfig Linux tool can show the current details for the network interface:
ifconfig wwan0

libqmi is well integrated and supported in ModemManager tool for Linux. ModemManager again is well integrated and supported when using NetworkManager tool in Linux. Please note however that these two tools expect the cellular module interfaces to only be used by them so if you manually want to use the libqmi library or AT commands interfaces, please turn off/disable ModemManager and NetworkManager first.

The libqmi is a generic open source library for Linux systems and QMI protocol from Qualcomm, therefor there are several commands only working on selected devices and not necessarily on supported in the specific device you use, resulting in an error message.


How can we integrate the Simcom SIM7500/SIM7600 Series Linux NDIS driver in Linux kernel without rebuilding it?


The Simcom SIM7500/SIM7600 series Linux NDIS network driver can be built and installed without rebuilding the complete Linux kernel your OS distribution uses. Please see steps and pre-requirements bellow and download the attached "Simcom SIM7500 and SIM7600 Series Linux Network NDIS driver installation files and guide (without kernel rebuild)" archive to get started.

Should you instead want to include the NDIS driver into your customized Linux kernel build, please relate to "SIMCom SIM7500 - SIM7600 series modules Linux NDIS driver and system integration guide V2.01" attached to the FAQ.

All commands are supposed to be executed with elevated system privileges/as root user.

Ensure that your original kernel was built with the following config options enabled, this will allow the option and usbnet driver pre-requirments to be included in kernel. (usually already included in larger distributions)

Build-tools and Linux header files for your kernel version are also required, these can be installed e.g. through your OS distributions package manager, on Debian/Ubuntu systems:
apt-get install build-essential make gcc
apt-get install linux-headers-`uname -r`

The in-kernel qmi_wwan driver should be blacklisted and prevented from loading as it will block the Simcom wwan driver, this is how it can be done e.g. in Ubuntu systems:
grep -q -F 'blacklist qmi_wwan' /etc/modprobe.d/blacklist-modem.conf || echo 'blacklist qmi_wwan' >> /etc/modprobe.d/blacklist-modem.conf

Build and install the driver:
Unzip the archive and copy the folder sim7600 to your selected working directory.
Navigate to it, e.g.:
cd /usr/src/sim7600/

Build and install the drivers:
make install

Some warnings might appear, but verify that no errors are reported.

Restarting the host system should now result in the correct network drivers being loaded for the cellular module once the USB device is detected in the system.

It can be verified by finding lsusb -t listing "Driver=simcom_wwan" for a USB endpoint:
Bus 001 Device 005: ID 1e0e:9001 Qualcomm / Option

lsusb -t
/: Bus 01.Port 1: Dev 1, Class=root_hub, Driver=xhci_hcd/8p, 480M
|__ Port 4: Dev 5, If 0, Class=Vendor Specific Class, Driver=option, 480M
|__ Port 4: Dev 5, If 1, Class=Vendor Specific Class, Driver=option, 480M
|__ Port 4: Dev 5, If 2, Class=Vendor Specific Class, Driver=option, 480M
|__ Port 4: Dev 5, If 3, Class=Vendor Specific Class, Driver=option, 480M
|__ Port 4: Dev 5, If 4, Class=Vendor Specific Class, Driver=option, 480M
|__ Port 4: Dev 5, If 5, Class=Vendor Specific Class, Driver=simcom_wwan, 480M

dmesg | grep 'simcom_wwan'
simcom_wwan 1-4:1.5 wwan0: register 'simcom_wwan' at usb-0000:00:15.0-4, SIMCOM wwan/QMI device, 8a:d8:ff:c2:87:11

Additional make options and information:
If you've built the driver previously already, first clean out any old builds with:
make clean

If you only want to build the driver but not install it into /lib/modules/`uname -r`/kernel/drivers/net/usb/, use make without install parameter:

Testing of the cellular connection can easily be done by first performing the necessary initiation AT commands to the cellular module over Modem/AT commands serial interface normally located on /dev/ttyUSB2. Use e.g. minicom tool to communicate with it.
Can be installed e.g. through the distributions package manager:
apt-get install minicom

Access the serial interface:
minicom -D /dev/ttyUSB2

Please relate to AT commands guide for full details on what commands are supported.
Issue AT and check that you get OK as reply.

Enable echo on characters sent to module:

Request general info about module:

Enter the SIM pin code (if necessary for SIM card)

Enter your operators APN details:

Enter APN authentication details (if necessary) further details found in the AT commands guide.

Check network registration:

Activate and connect the cellular data connection to the network interface installed in Linux system:

When you get the reply $QCRMCALL: 1, V4 from cellular module it means that the data connection to your network operator is fully established and you can now exit the minicom tool (CTRL+A followed by Z key and Q key and select yes to exit).

Once here you can now perform a DHCP request on the cellular network interface in the Linux system by using your favorite DHCP client in Linux e.g. dhclient or udhc e.g.:
dhclient -v wwan0
udhcpc --interface=wwan0

The cellular network interfaces are normally named starting from wwan0 but might get renamed by some Linux distributions automatically. All available network interfaces can be listed with command:
ip link show

The network interface can be tested e.g. by sending ping requests to a remote server over the selected network interface:
ping -I wwan0
PING ( from wwan0: 56(84) bytes of data.
64 bytes from icmp_seq=1 ttl=120 time=191 ms
64 bytes from icmp_seq=2 ttl=120 time=46.1 ms
64 bytes from icmp_seq=3 ttl=120 time=52.8 ms
64 bytes from icmp_seq=4 ttl=120 time=43.3 ms
--- ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3004ms
rtt min/avg/max/mdev = 43.350/83.407/191.281/62.376 ms