TECHSHIP IS A GLOBAL SUPPLIER OF WIRELESS COMPONENTS

Register

SIMCom SIM7600SA LTE CAT-1 mPCIe

Article Number: 10813
Supplier number: S2-107KV-Z1W4D

The SIMCom SIM7600SA is Multi-Band LTE-TDD/LTE-FDD module solution in a mPCIe form factor. SIM7600SA is a LTE CAT-1 module with support of up to 10Mbps downlink data transfer intended for the Australian, New Zealand and South American markets.

With abundant application capability like TCP/UDP/FTP/FTPS/HTTP/HTTPS/DNS, the module provides much flexibility and ease of integration for customer's application

End-of-life

This product has reached
end-of-life and can not be
ordered any more.

Quantity Price

No prices available

For more information
please contact us at
sales-americas@techship.com

For larger quantities and complete pricing, please sign in or register

Do you need offline data on this product?

Download datasheet

Subscribe to stay up to date with the latest about this product.

Subscribe to updates
UMTS Bands
B1 (2100)
B2 (1900)
B8 (900)
B5 (850)
MIMO (Multiple-Input Multiple-Output)
Yes
LTE Bands
B1 (2100)
B2 (1900)
B3 (1800)
B4 (AWS)
B7 (2600)
B8 (900)
B5 (850)
B40 (TDD 2300)
B28 (700 APAC)
GSM/EDGE Bands
B5 (850)
B8 (900)
B3 (1800)
B2 (1900)
Manufacturer
SIMCom
LTE Region
Europe
Australia
South America
FOTA Firmware Updates
No
Form Factor
mPCIe - full size
mPCIe
Technology
LTE - cat 1
Antenna Interface
IPEX MHF/U.FL
GPS
Yes
GNSS technology
GPS
GLONASS
Max DL Speed
10 Mbps
Max UL Speed
5 Mbps
Chipset
Qualcomm
Operating Temperature Range
-40 °C – 85 °C
Driver Support
Windows 7
Linux
Android
Windows 8
Windows 8.1
Windows 10
Interface
USB 2.0
Voice Call Support
Yes
GNSS antenna support
Passive
Active
SIM interface
Through miniPCIe connector
Extended Operating Temperature Range
-40 °C – 85 °C
Audio interface
Digital PCM signal input/output in socket
Digital PCM signal over USB interface
Certification
RoHS
REACH
ACMA
CE RED
Technical details:
For details on the firmware version related to the manufacturers product number and SKU/BOM codes, please check supplier number found on top of this product page to the comparison chart found in the following FAQ:
SKU/BOM code vs. firmware version comparison chart

Do you need a specific firmware version or SKU/BOM for this product?
Please contact the Techship sales team for additional details on availability and firmware flashing possibilities.

Datasheet for SIMCom SIM7600 CAT-1 Series on mPCIe card

Download

Uploaded at
2018-09-20 14:22:54
Last updated
2020-06-02 11:22:53
Version
20200528
Related products
SIMCom SIM7600E LTE CAT-1 mPCIe
SIMCom SIM7600SA LTE CAT-1 mPCIe

This document describes the electronic specifications, RF specifications, interfaces, mechanical characteristics and testing results of the SIMCom SIM7600E and SIM7600E-H module. With the help of this document and other software application notes/user guides, users can understand and use module to design and develop applications quickly.

Download

Document summarizing and describing the GPS systems epoch roll over dates in Simcom products GPS trackers and how to take precaution for it.

Download

Uploaded at
2020-01-07 14:50:05
Last updated
2020-01-07 14:50:05
Version
191119
Related products
SIMCom SIM7070E Development Kit
SIMCom SIM7912G LTE CAT-12 M.2
SIMCom SIM7070E CAT-M/NB2
SIMCOM SIM8200EA-M.2 5G
SIMCom SIM7600G-H LTE CAT-4 mPCIe
SIMCom SIM7000A CAT-M/NB-IoT mPCIe
SIMCom SIM7906E LTE CAT-6 mPCIe
SIMCom SIM7906E LTE CAT-6 M.2
SIMCom SIM7000A CAT-M/NB-IoT SMT AT&T
SIMCom SIM7000A CAT-M/NB-IoT SMT Verizon
SIMCom SIM7020G-SUB KIT
SIMCom SIM7600A-H LTE CAT-4 mPCIe-SIM
SIMCom SIM7600E Development Kit
SIMCom SIM7000G CAT-M/NB-IoT/GSM miniPCIe
SIMCom SIM7000E CAT-M/NB-IoT PCIE
SIMCom SIM7000G Development Kit
SIMCom SIM7600E-H LTE CAT 4 -mPCIE with Audio
SIMCom SIM7600SA LTE CAT-1 mPCIe
SIMCom SIM7600E LTE CAT-1 mPCIe
SIMCom SIM7600SA-H LTE CAT-4 mPCIe with SIM holder
SIMCom SIM7020E NB-IoT SMT
SIMCom SIM7000G
SIMCom SIM7020E-SUB KIT Developer kit
SIMCom SIM7600V-H LTE CAT-4 mPCIe Audio Verizon
SIMCom SIM7600A-H LTE CAT-4 mPCIe US
SIMCom SIM7600SA-H LTE CAT-4 mPCIe
SIMCom SIM7600A-H LTE CAT-4 mPCIe Audio
SIMCom SIM7600E-H LTE CAT-4 mPCIe SIM
SIMCom SIM7600E-H LTE CAT-4 mPCIe EU
SIMCom SIM7600E-H LTE SMT EU
SIMCom SIM7000E Development Kit
SIMCom SIM7000E CAT-M/NB-IoT SMT
SIMCom SIM7500SA LTE mPCIe Audio
SIMCom SIM5320A mPCIe
SIMCom SIM7500E LTE mPCIe EU
SIMCom SIM868 GSM/GNSS SMT
SIMCom SIM7500E Development Kit
SIMCom SIM7500E LTE SMT EU
SIMCom SIM7500A Development kit
SIMCom SIM5300E HSPA SMT
SIMCom SIM7500A LTE SMT US
SIMCom SIM28M development kit
SIMCom SIM68M development kit
SIMCom SIM39EAU development kit
SIMCom SIM33ELA development kit
SimCom SIM5360E-mPCIe SIM
Simcom SIM33ELA
Simcom SIM39EAU
SIMCom SIM68M GNSS SMT
Simcom SIM28M
SimCom SIM5360E HSPA+ mPCie Audio/GPS
SimCom SIM7100E LTE mPCIe SIM
SIMCom SIM808 development kit
SIMCom SIM800F development kit
SimCom SIM800F GSM SMT
SimCom SIM900B development kit
Simcom SIM900 development kit
SimCom SIM800C development kit
SimCom Connector to SIM900B
SimCom SIM800H development kit
SimCom SIM808 GSM/GPS SMT
SimCom SIM7230 LTE mPCIe EU
SimCom SIM7100C LTE mPCIe China
SimCom SIM7100A LTE mPCIe US
SimCom SIM7100E LTE mPCIe EU
SimCom SM7100A LTE SMT US
SimCom SIM7100E LTE SMT EU
SimCom SIM5360E HSPA+ mPCie EU
SimCom SIM900B GSM B2B
SimCom SIM800C GSM SMT
SimCom SIM800H GSM LGA
SimCom SIM900 GSM SMT
SIMCom SIM7070E mPCIe

This archive contains the SIMCOM:
SIM7X00 Series_GPIO_Application Note_V1.00.pdf
SIM7X00 Series_GPS_Application Note_V1.00.pdf
SIM7X00 Series_SAT_Application Note_V1.00.pdf
SIM7X00 Series_Sleep Mode_Application Note_V1.00.pdf
SIM7X00 Series_SMS_Application Note_V1.00.pdf
SIM7X00 Series_TCPIP_Application Note_V1.00.pdf
SIM7X00 Series_UART_Application Note_V1.00.pdf
SIM7X00_Audio_Application_Note_V1.00.pdf
SIM7100_SIM7500_SIM7600 Series_LBS_Application Note_V1.00.pdf
SIM7100_SIM7500_SIM7600 Series_UIM HOT SWAP_Application Note_V1.01.pdf
SIM7100_SIM7500_SIM7600 Series_USB AUDIO_Application Note_V1.03.pdf
SIM7100_SIM7500_SIM7600_Sleep Mode_Application Note_V1.01.pdf
SIM7100_SIM7600M22 Series_TTS_Application Note_V1.02.pdf
SIM7500_SIM7600 Series_Delta_Package_Update_Application Note_V1.02.pdf
SIM7500_SIM7600_SIM7800 Series_FTPS_AT Command Manual_V1.00.pdf
SIM7500_SIM7600_SIM7800 Series_HTTP_AT Command Manual_V1.00.pdf
SIM7500_SIM7600_SIM7800 Series_MQTT_AT Command Manual_V1.00.pdf
SIM7500_SIM7600_SIM7800 Series_SSL_AT Command Manual_V1.00.pdf
SIM7500_SIM7600_SIM7800 Series_TCPIP_AT Command Manual_V1.00.pdf
SIM7600 Hardware Design Notice V1.02.pdf
SIM7600 Series_HSIC_LAN_Application_Note_V1.00.pdf
SIM7600_USB-OTG_Application_Note_V1.00.pdf
SIM7600M22_MIFI_Application Note_V1.00.pdf
SIM7600M22_MIFI_RTL_Application Note_V1.00.pdf

Download

SIM7600SA Telstra Certificate 2018

Download

Uploaded at
2019-01-10 10:31:28
Last updated
2019-01-10 10:32:29
Version
1.0
Related products
SIMCom SIM7600SA LTE CAT-1 mPCIe

This archive contains the Windows operating system drivers for the SIM7000, SIM7100, SIM7230, SIM7500, SIM7600, SIM7800 series Qualcomm chipset based cellular modules. Please refer to the installation instructions document for USB mode selection details.

Download

Question

How to collect initial diagnostics data and logs for Simcom cellular modules, needed when requesting Techship technical support?

Solution

In order to troubleshoot and solve a technical problem, we ask you to please provide information about your host system and logs from the related Simcom module when creating a technical support ticket.

Detailed problem description and in what situations it present or can be reproduced.

Describe the host system:
-Hardware (system board, peripherals...)
-Operating system and detailed versions (E.g. Windows, Linux release, kernel...)
-Drivers and driver versions

Identify the precise details of cellular module found on label:
-Model
-SKU/BOM or P/N code
(For RMA returns the IMEI number is mandatory)

If you are running on a Linux based system, please capture the terminal logs bellow:
uname -a
lsusb
lsusb -t
ifconfig -a
ls -l /dev/serial/by-id
ls -l /sys/bus/usb-serial/devices
dmesg

The logs from the cellular module firmware can be acquired by accessing the USB enumerated serial (COM) interfaces accepting AT commands. They can be named modem, AT, PC UI etc. (In Windows device manager, found under modem or serial interfaces). Send the following AT commands bellow to module and capture the output and include them when creating the the technical support ticket.

Test that you get a reply with command:
AT
Command echo enabled:
ATE1
Basic module info:
ATI
Detailed module version info:
AT+SIMCOMATI
Verbose error reporting:
AT+CMEE=2
Last error report:
AT+CEER
Firmware version:
AT+CGMR
AT+CSUB
IMEI Code:
AT+CGSN
USB endpoint configuration:
AT+CUSBPIDSWITCH?
List current configuration:
AT&V
Operational mode:
AT+CFUN?
Pin status:
AT+CPIN?
Request UE system info:
AT+CPSI?
Preferred network mode:
AT+CNMP?
Preferred band selection:
AT+CNBP?
Preferred acquisition order:
AT+CNAOP?
List network operator info:
AT+COPS?
Network registration status:
AT+CREG?
Network EPS registration status:
AT+CEREG?
Signal strength:
AT+CSQ
Packet domain attach status
AT+CGATT?
List APN details/PDP profiles:
AT+CGDCONT?
AT$QCPDPP?
PDP profiles attach status:
AT+CGACT?
Show PDP IP address:
AT+CGPADDR
AT+CGCONTRDP
RM network interface status:
AT$QCRMCALL?

The support ticket can be created after login at: https://techship.com/technical_support/

Question

How-to use the SIM7600 series modules in RNDIS USB mode with automatic connection management

Solution

Both Windows and Linux systems can support RNDIS interface drivers for the SIM7600 series modules, this example demonstrates how it can be done in a Linux environment.
There is a open source Linux in-kernel driver supporting RNDIS USB network interfaces called rndis_host.
Make sure to have the kernel config for rndis host driver support enabled.
Read more about the kernel configs in this FAQ:
Common Linux kernel modules and configs necessary for communicating with cellular modules over USB interface

By default the Simcom modules are delivered with QMI/RMNET network interface enabled, so you will need to change the USB mode by AT commands on the Modem/AT serial ports exposed over the USB interface.
lsusb
Bus 001 Device 006: ID 1e0e:9001 Qualcomm / Option

Switch the module from USB PID 9001 to USB PID 9011 mode for RNDIS interface:
AT+CUSBPIDSWITCH=9011,1,1

The module will now restart automatically and re-enumerate with a new USB ID.
Check dmesg or with lsusb that you have the Simcom SIM7600 module detected with, VID: 1e0e PID: 9011
lsusb
Bus 001 Device 006: ID 1e0e:9011 Qualcomm / Option

Verify with lsusb -t that the Linux in-kernel driver rndis_host driver is loaded correctly for interface 0 and 1.
It can look e.g. like this:
lsusb -t

/: Bus 01.Port 1: Dev 1, Class=root_hub, Driver=xhci_hcd/8p, 480M
|__ Port 4: Dev 6, If 3, Class=Vendor Specific Class, Driver=option, 480M
|__ Port 4: Dev 6, If 1, Class=CDC Data, Driver=rndis_host, 480M
|__ Port 4: Dev 6, If 6, Class=Vendor Specific Class, Driver=option, 480M
|__ Port 4: Dev 6, If 4, Class=Vendor Specific Class, Driver=option, 480M
|__ Port 4: Dev 6, If 2, Class=Vendor Specific Class, Driver=option, 480M
|__ Port 4: Dev 6, If 0, Class=Communications, Driver=rndis_host, 480M
|__ Port 4: Dev 6, If 5, Class=Vendor Specific Class, Driver=option, 480M

If your system don't load the option serial interfaces correctly, then they can be forcefully loaded as bellow:
modprobe option
echo 1e0e 9011 > /sys/bus/usb-serial/drivers/option1/new_id

Relate to the following Linux kernel commit for details on how to modify the usb serial option driver source code in order to auto load the drivers:
USB: serial: option: add support for Simcom SIM7500/SIM7600 RNDIS mode

You should now have the Linux system drivers ready for usage, and a rndis network interface visible (typically named usb0). The host system have a DHCP client active on the network interface. Module will delegate a Network Address Translated (NAT) IP to the Linux host system.

Example:
dhclient -v usb0
Listening on LPF/usb0/4a:de:a7:7e:46:07
Sending on LPF/usb0/4a:de:a7:7e:46:07
Sending on Socket/fallback
DHCPREQUEST of 192.168.225.46 on usb0 to 255.255.255.255 port 67 (xid=0xaabce35)
DHCPACK of 192.168.225.46 from 192.168.225.1
RTNETLINK answers: File exists
bound to 192.168.225.46 -- renewal in 21475 seconds.

In order to enable the automatic network connection establishment, the SIM card should have PIN code check disabled. If it isn't disabled, the Linux host system need to provide the PIN code to module after each modem restart.
Refer to AT command: AT+CPIN=xxxx for further details.

The Access Point Name (APN) related to your cellular subscription needs to be configured once to the module so the automatic connection establishment can be established on the correct data bearer.

Defining an empty string as value on the AT+CGDCONT profile, will make the module try to subscribe for a APN, however this may not always work e.g. in roaming conditions, so best procedure is to always configure the correct ones for the network and your subscription.

Check the currently configured APN profiles:
AT+CGDCONT?
You should have at least profile 1 and 6 defined to empty strings to enable subscribe of the APN details: AT+CGDCONT=1,"IPV4V6",""
AT+CGDCONT=6,"IPV4V6",""

+CGDCONT Profile 1 is used for the cellular network registration process and APN at profile 6 will be tied to the RNDIS network interface for data connection.

Define both APN profiles according to the details you have obtained for your cellular subscription. Most often the APN details are same for both network registration and the actual data connection, then you define same details to both profile 1 and 6:
AT+CGDCONT=1,"IPV4V6","MY-SUBSCRIPTION-APN"
AT+CGDCONT=6,"IPV4V6","MY-SUBSCRIPTION-APN"

Some APN names require additional authentication also, please refer to the AT command: AT+CGAUTH in the AT commands guide for details on how to define auth details correctly.
Current auth configurations can be checked with AT command:
AT+CGAUTH?
Most often no auth details are needed for the profiles and they should be empty, profiles can be cleared by defining the profile number in question and zero in the second parameter:
AT+CGAUTH=1,0
AT+CGAUTH=6,0

If you have modified the APN information, username and passwords it is necessary to disconnect and reconnect to cellular network and packet data service to activate the new settings.
It can easily be done with AT+CFUN=0 command followed by AT+CFUN=1 to switch module operation mode (SIM card will also be re-initialized, so PIN code have to be given again if the PIN code check is activated).

The module will now try to establish and maintain the data connection automatically with the new settings.
If everything was configured correctly and the connection established successfully on the APN, the host system will have network access on the RNDIS network interface:

It can be tested e.g. by pinging a remote host over the RNDIS network interface:
ping -I usb0 8.8.8.8
PING 8.8.8.8 (8.8.8.8) from 192.168.225.46 usb0: 56(84) bytes of data.
64 bytes from 8.8.8.8: icmp_seq=1 ttl=52 time=167 ms
64 bytes from 8.8.8.8: icmp_seq=2 ttl=52 time=37.6 ms
64 bytes from 8.8.8.8: icmp_seq=3 ttl=52 time=44.4 ms
64 bytes from 8.8.8.8: icmp_seq=4 ttl=52 time=33.6 ms

--- 8.8.8.8 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 8ms
rtt min/avg/max/mdev = 33.600/70.635/166.972/55.753 ms

Tested on:
SIM7600E-H/SIM7600SA-H with firmware release LE11B12SIM7600M22.
SIM7600G-H with firmware release LE20B01SIM7600M22.

Question

What Linux kernel modules and configs are commonly used for communicating with cellular modules over their USB interface?

Solution

Most cellular modules can be supported in Linux by using som of the in-kernel drivers. The physical data interface to the host Linux system is usually done over USB which enumerates a set of different endpoints/interfaces. A set of serial interfaces for Modem/PPP, AT commands, NMEA location data and chipset debug information are almost always available in all configurations.

In addition some type of network endpoint/interface are also available and exposed. This can vary between manufacturers and chipset vendors and can also commonly be configurable by using USB configuration mode switching or through vendor specific AT commands.

Recommended kernel configurations to enable are listed bellow. Many cellular modules base their Linux support on these modules and drivers. Once included in the kernel build, the USB interfaces will be detected and bound correctly out-of-the-box or after applying source code patches to the driver modules.

Configs for USB serial drivers:
CONFIG_USB_SERIAL
CONFIG_USB_SERIAL_GENERIC
CONFIG_USB_SERIAL_WWAN
CONFIG_USB_SERIAL_OPTION
CONFIG_USB_SERIAL_QUALCOMM
CONFIG_USB_ACM

Configs for Modem/PPP support:
CONFIG_PPP
CONFIG_PPP_BSDCOMP
CONFIG_PPP_DEFLATE
CONFIG_PPP_FILTER
CONFIG_PPP_MPPE
CONFIG_PPP_MULTILINK
CONFIG_PPPOE
CONFIG_PPP_ASYNC
CONFIG_PPP_SYNC_TTY

Configs for USB network drivers:
CONFIG_USB_USBNET
CONFIG_USB_NET_QMI_WWAN
CONFIG_USB_NET_CDCETHER
CONFIG_USB_NET_RNDIS_HOST
CONFIG_USB_NET_CDC_NCM
CONFIG_USB_NET_HUAWEI_CDC_NCM
CONFIG_USB_NET_CDC_MBIM

Please relate to the Techship product specific web pages for vendor specific Linux integration guides.

Below is a selection of kernel commits relating to cellular module support in Linux kernels:
qmi_wwan: Add support for Fibocom NL678 series
qmi_wwan: Added support for Telit LN940 series
qmi_wwan: Added support for Fibocom NL668 series
USB: serial: option: add support for GosunCn ME3630 RNDIS mode
USB: serial: option: add support for Simcom SIM7500/SIM7600 RNDIS mode
USB: serial: option: add Simcom SIM7500/SIM7600 (MBIM mode)
USB: serial: option: add Fibocom NL678 series
USB: serial: option: add Telit LN940 series
USB: serial: option: add Fibocom NL668 series
USB: serial: option: add GosunCn ZTE WeLink ME3630
qmi_wwan: apply SET_DTR quirk to the SIMCOM shared device ID

If you use any of the listed cellular modules, drivers and specified USB modes in the commits above, ensure that your kernel version already include the patch or apply it to your build.

Related products
Huawei ME909u-521 - EU/ASIA
Huawei ME909u-523D - US - AT&T
Huawei ME909u-521 Mini PCI Express - EU/ASIA
Huawei ME909u-523D Mini PCI Express - US - AT&T
Sierra Wireless MC7710
Huawei ME909u-521 developer kit
Sierra Wireless MC7750
Sierra Wireless MC7700
Sierra Wireless MC7304
Sierra Wireless MC7354
Sierra Wireless MC7350
Sierra Wireless EM7305
Sierra Wireless EM7355
Huawei MU709s-2 LGA
Huawei MU709s-2 devkit
Huawei MS2131i-8 USB-stick
Huawei MU709s-2 mPCIe
Huawei ME909s-821 mPCIe
Huawei ME909s-821 LGA
Huawei ME909s-120 mPCIe EU
Huawei ME909s-120 LGA EU
Huawei MU709s-6 mPCIe
SimCom SIM5360E HSPA+ mPCie EU
SimCom SIM7100E LTE SMT EU
SimCom SIM7100E LTE mPCIe EU
SimCom SIM7100A LTE mPCIe US
SimCom SIM7100C LTE mPCIe China
SimCom SIM7230 LTE mPCIe EU
Huawei ME906s-158 M.2 EU
Huawei ME909s-120 LGA dev.kit
Sierra Wireless MC7455 LTE Cat 6
Sierra Wireless EM7455 LTE Cat 6
SimCom SIM7100E LTE mPCIe SIM
SimCom SIM5360E HSPA+ mPCie Audio/GPS
Sierra Wireless MC7430 mPCIe
SimCom SIM5360E-mPCIe SIM
Sierra Wireless EM7430 LTE Cat 6
Techship Starter kit Huawei ME909s
SIMCom SIM7500A LTE SMT US
SIMCom SIM5300E HSPA SMT
SIMCom SIM7500A Development kit
Sierra Wireless WP7502
SIMCom SIM7500E LTE SMT EU
SIMCom SIM7500E Development Kit
Huawei MU709s-2 LGA TTS
Welink ME3630 E1C LCC EU
Welink ME3630 E1C mPCIe EU
SIMCom SIM7500E LTE mPCIe EU
Welink ME3630 U1A LCC (US)
Welink ME3630 U1A mPCIe (US)
SIMCom SIM5320A mPCIe
SIMCom SIM7500SA LTE mPCIe Audio
SIMCom SIM7000E CAT-M/NB-IoT SMT
Telit HE910-G HSPA+, GPS, mPCIe
Telit HE910-G-SIM HSPA+, GPS, miniPCIe, SIM card holder
Telit HE910-D HSPA+, miniPCIe, Global
Telit HE910-D-SIM HSPA+, miniPCIe, SIM card holder
Telit LM940A11 LTE CAT-11, GPS, mPCIe
Telit LE910-EU V2 LTE CAT-4, mPCIe
Telit LE910-SV V2 LTE CAT-4, Verizon, mPCIe
Telit LE910-NA V2 LTE CAT-4, AT T, TM, mPCIe
Telit LE910-AU V2 LTE CAT-4, Telstra, mPCIe
Telit HE910-GL SIM UMTS, miniPCIe, SIM card holder
Telit HE910-G (Voice) HSPA+ LGA
Telit HE910-DG HSPA+ LGA
Telit HE910-EUD HSPA LGA
Telit LE910-NA1 LTE CAT-1 LGA
Telit LE910-EU1 LTE CAT-1 LGA
Telit LE910-SV1 LTE CAT-1 LGA
Telit LE910-EU V2 LTE CAT-4 LGA
Telit LE910-NA V2 LTE CAT-4 LGA
Telit LE910D1-E1 LTE CAT-1 LGA
Telit LN940 A11 LTE CAT-11 M.2
Telit LN940 A9 LTE CAT-9 M.2
SIMCom SIM7000E Development Kit
Huawei MS2372h-153 LTE USB Dongle EU
SIMCom SIM7600E-H LTE SMT EU
SIMCom SIM7600E-H LTE CAT-4 mPCIe EU
Sierra Wireless EM7565 LTE CAT-12
Welink ME3630 C1C mPCIe CN
SIMCom SIM7600E-H LTE CAT-4 mPCIe SIM
Huawei MS2372h-517 LTE USB Dongle US
SIMCom SIM7600A-H LTE CAT-4 mPCIe Audio
Huawei MS2372h-607 LTE USB Dongle Asia
Welink ME3630 E1C M.2 EU
Welink ME3630 E2C CAT-1 M.2 EU
Telit LE910-NA V2 LTE CAT-4, S.SKU, mPCIe
SIMCom SIM7600SA-H LTE CAT-4 mPCIe
SIMCom SIM7600A-H LTE CAT-4 mPCIe US
SIMCom SIM7600V-H LTE CAT-4 mPCIe Audio Verizon
Telit LE910-NA1 LTE CAT-1 Developer Kit
Telit LE910-EU1 LTE CAT-1 Developer Kit
Telit LE910-SV1 LTE CAT-1 Developer Kit
SIMCom SIM7020E-SUB KIT Developer kit
SIMCom SIM7000G
SIMCom SIM7020E NB-IoT SMT
SIMCom SIM7600SA-H LTE CAT-4 mPCIe with SIM holder
SIMCom SIM7600E LTE CAT-1 mPCIe
SIMCom SIM7600SA LTE CAT-1 mPCIe
SIMCom SIM7600E-H LTE CAT 4 -mPCIE with Audio
Telit LM960 LTE CAT-18, GPS, mPCIe
Telit LN941 LTE CAT-6, M.2
Sierra Wireless EM7511 LTE CAT-12
Sierra Wireless EM7565, CAT-12, M.2 CBRS Enabled
SIMCom SIM7000G Development Kit
SIMCom SIM7000E CAT-M/NB-IoT PCIE
SIMCom SIM7000G CAT-M/NB-IoT/GSM miniPCIe
SIMCom SIM7600E Development Kit
SIMCom SIM7600A-H LTE CAT-4 mPCIe-SIM
SIMCom SIM7020G-SUB KIT
Sierra Wireless MC-WP7607 LTE CAT-4 mPCIe
Telit LE910C4-NF LTE CAT-4 mPCIe
Telit LE910-NA V2 LTE CAT-4, S.SKU LGA
Telit LE910B1-NA S.SKU
Telit LE910C1-NS LTE CAT-1 Sprint mPCIe
Telit LE910-SVL LTE CAT-1
Telit HE910-GL HSPA+ LGA
SIMCom SIM7000A CAT-M/NB-IoT SMT Verizon
SIMCom SIM7000A CAT-M/NB-IoT SMT AT&T
SIMCom SIM7906E LTE CAT-6 M.2
SIMCom SIM7906E LTE CAT-6 mPCIe
SIMCom SIM7000A CAT-M/NB-IoT mPCIe
Telit HE910-NAD HSPA+ LGA
Telit LE910-SVG LTE CAT-3 LGA
Telit HE910-NAR HSPA LGA
Telit HE910-D HSPA+ LGA
Telit LE910C1-NA LTE CAT-1 AT&T LGA
Telit LE910C1-NS LTE CAT-1 Sprint LGA
Telit LE910-NAG LTE CAT-3 AT&T LGA
Telit LE910-SVG LTE CAT-3 mPCIe
Telit LE910-NVG LTE CAT-3 LGA
SIMCom SIM7600G-H LTE CAT-4 mPCIe
Telit LE910-NA1 S.SKU
Telit LE910-JN1
Telit LE910C1-AP
Telit LE910C1-EU
Telit LE910B1-NA
Telit LE910B1-SA
Telit LE910-AU V2
Telit LE910-SV V2
Telit LE910B4-NA
Telit LE910C4-NF
Telit LE910-PCI (LE910-SV1)
Telit LE910-PCI (LE910-EU1)
Telit LE910-PCI (LE910-JN1)
Telit LE910-PCI (LE910-NA1)
Telit LE910-PCI (LE910C1-AP)
Telit LE910-PCI (LE910C1-NA)
Telit LE910C1-EU LTE CAT-1 mPCIe
Telit LE910-SV V2 (Reel)
Telit LE910C4-EU LTE CAT-4 mPCIe
Telit LE910C4-EU LTE CAT-4 mPCIe SIM
GosuncnWelink GM500 U1A CAT-4 M.2
Telit LE910C1-NF
SIMCom SIM7070E CAT-M/NB2
SIMCom SIM7070E Development Kit
Telit LM940A11, HW Rev. 2, LTE CAT-11, GPS, mPCIe
SIMCom SIM7070E mPCIe
Telit LE910C4-NF LTE CAT-4 mPCIe SIM
SIMCom SIM7912G LTE CAT-12 M.2
Sierra Wireless WP7702 LTE CAT-M/NB-IoT LGA
Telit LM960A18 LTE CAT-18 mPCIe
Gosuncn GM500 U1A mPCIe (US)
Question

How can we establish data connection for cellular modules in Windows 8 and Windows 10 systems?

Solution

Microsoft Windows desktop versions starting from Windows 8 and newer have built in data connection manager for WWAN, Wifi etc. that can be used to configure, control and establish the data connection of cellular module that support MBIM interface, which most cellular modules do.

The connection managers settings and controls can be found and accessed on Windows desktop start menu through the network icon (see picture).

The Cellular tab can be found in Windows system settings and if needed the connection APN details can be manually entered through "Advanced options".

Images
Windows 10 connection manager Windows 10 connection settings
Related products
Sierra Wireless MC7304
Sierra Wireless MC7354
Sierra Wireless MC7350
Sierra Wireless EM7305
Sierra Wireless EM7355
Huawei MU709s-2 LGA
Huawei MU709s-2 mPCIe
Huawei ME909s-821 mPCIe
Huawei ME909s-821 LGA
Huawei ME909s-120 mPCIe EU
Huawei MU709s-6 mPCIe
SimCom SIM7100E LTE SMT EU
SimCom SM7100A LTE SMT US
SimCom SIM7100E LTE mPCIe EU
SimCom SIM7100A LTE mPCIe US
SimCom SIM7100C LTE mPCIe China
Huawei ME906s-158 M.2 EU
Sierra Wireless MC7455 LTE Cat 6
Sierra Wireless EM7455 LTE Cat 6
SimCom SIM7100E LTE mPCIe SIM
Sierra Wireless MC7430 mPCIe
Sierra Wireless EM7430 LTE Cat 6
SIMCom SIM7500A LTE SMT US
SIMCom SIM7500E LTE SMT EU
Huawei MU709s-2 LGA TTS
Welink ME3630 E1C LCC EU
Welink ME3630 E1C mPCIe EU
SIMCom SIM7500E LTE mPCIe EU
Welink ME3630 U1A LCC (US)
Welink ME3630 U1A mPCIe (US)
SIMCom SIM7500SA LTE mPCIe Audio
Telit LM940A11 LTE CAT-11, GPS, mPCIe
Telit LE910-EU V2 LTE CAT-4, mPCIe
Telit LE910-SV V2 LTE CAT-4, Verizon, mPCIe
Telit LE910-NA V2 LTE CAT-4, AT T, TM, mPCIe
Telit LE910-AU V2 LTE CAT-4, Telstra, mPCIe
Telit LE910-NA1 LTE CAT-1 LGA
Telit LE910-EU1 LTE CAT-1 LGA
Telit LE910-SV1 LTE CAT-1 LGA
Telit LE910-EU V2 LTE CAT-4 LGA
Telit LE910-NA V2 LTE CAT-4 LGA
Telit LE910D1-E1 LTE CAT-1 LGA
Telit LN940 A11 LTE CAT-11 M.2
Telit LN940 A9 LTE CAT-9 M.2
SIMCom SIM7600E-H LTE SMT EU
SIMCom SIM7600E-H LTE CAT-4 mPCIe EU
Welink ME3630 C1C mPCIe CN
SIMCom SIM7600E-H LTE CAT-4 mPCIe SIM
SIMCom SIM7600A-H LTE CAT-4 mPCIe Audio
Welink ME3630 E1C M.2 EU
Welink ME3630 E2C CAT-1 M.2 EU
Telit LE910-NA V2 LTE CAT-4, S.SKU, mPCIe
SIMCom SIM7600SA-H LTE CAT-4 mPCIe
SIMCom SIM7600A-H LTE CAT-4 mPCIe US
SIMCom SIM7600V-H LTE CAT-4 mPCIe Audio Verizon
SIMCom SIM7600SA-H LTE CAT-4 mPCIe with SIM holder
SIMCom SIM7600E LTE CAT-1 mPCIe
SIMCom SIM7600SA LTE CAT-1 mPCIe
SIMCom SIM7600E-H LTE CAT 4 -mPCIE with Audio
Telit LM960 LTE CAT-18, GPS, mPCIe
Telit LN941 LTE CAT-6, M.2
SIMCom SIM7600E Development Kit
SIMCom SIM7600A-H LTE CAT-4 mPCIe-SIM
Sierra Wireless MC-WP7607 LTE CAT-4 mPCIe
Telit LE910C4-NF LTE CAT-4 mPCIe
Telit LE910-NA V2 LTE CAT-4, S.SKU LGA
Telit LE910B1-NA S.SKU
Telit LE910C1-NS LTE CAT-1 Sprint mPCIe
Telit LE910C1-NA LTE CAT-1 AT&T LGA
Telit LE910C1-NS LTE CAT-1 Sprint LGA
SIMCom SIM7600G-H LTE CAT-4 mPCIe
Telit LE910-NA1 S.SKU
Telit LE910C1-AP
Telit LE910C1-EU
Telit LE910B1-NA
Telit LE910B1-SA
Telit LE910-AU V2
Telit LE910-SV V2
Telit LE910B4-NA
Telit LE910C4-NF
Telit LE910-PCI (LE910-SV1)
Telit LE910-PCI (LE910-EU1)
Telit LE910-PCI (LE910-JN1)
Telit LE910-PCI (LE910-NA1)
Telit LE910-PCI (LE910C1-AP)
Telit LE910-PCI (LE910C1-NA)
Telit LE910C1-EU LTE CAT-1 mPCIe
Telit LE910C4-EU LTE CAT-4 mPCIe
Telit LE910C4-EU LTE CAT-4 mPCIe SIM
Telit LE910C1-NF
Telit LM940A11, HW Rev. 2, LTE CAT-11, GPS, mPCIe
Telit LE910C4-NF LTE CAT-4 mPCIe SIM
Telit LM960A18 LTE CAT-18 mPCIe
Telit LE910C1-EU LTE CAT-1 mPCIe SIM
Gosuncn GM500 U1A mPCIe (US)
Question

How-to change the cellular modulesUSB composition mode to Mobile Broadband Interface Model (MBIM) used by Windows 8 and 10 systems for controlling and establishing data connectivity through the built-in connection manager in Windows?

Solution

This is done by sending a set of AT commands to the cellular modules Modem or AT serial interface found in Windows Device Manager. Please see list below for associated AT commands.
(For additional details, refer to the product specific software, ports, and AT commands guides found on the Techship product web pages under technical documentation tab).

After the AT commands have been received by the module and has restarted, the USB interface endpoint composition should have changed to include MBIM interface as well.

You can find the correct Serial COM port number by checking Windows Device Manager, under the Modems drop down -> (right click and see properties for selected COM port info) or under the Ports (COM & LPT) drop down.

Vendor specific commands to use:
Sierra Wireless EM75xx series module:
AT!ENTERCND="A710"
AT#USBCOMP=1,3,100D
AT!RESET

Sierra Wireless EM74xx, MC74xx series module:
AT!ENTERCND=”A710”
AT!USBCOMP=1,1,100D
AT!RESET

Sierra Wireless EM73xx, MC73xx series module:
AT!ENTERCND=”A710”
AT!UDUSBCOMP=8
AT!RESET

Simcom SIM7100, SIM7500 and SIM7600 series modules:
AT+CUSBPIDSWITCH=9003,1,1
AT+CRESET

ZTE Welink ME3630 series:
AT+ZSWITCH=8
AT+ZRST

Telit LE910C1 and LE910C4 series:
AT#USBCFG=2
AT#REBOOT

Telit LM940 and LM940A11:
AT#USBCFG=2
AT#REBOOT

Telit LM960 and LM960A18:
AT#USBCFG=2
AT#REBOOT

Telit LE910 V2 series:
AT#USBCFG=3
AT#REBOOT

On Huawei and Telit LN94x series modules the USB mode changing is done automatically by the modules Windows drivers based on current Windows version.

Please be aware that some USB mode configurations do not include any serial interfaces, making it impossible to revert the changes using AT commands.

Related products
Sierra Wireless MC7304
Sierra Wireless MC7354
Sierra Wireless MC7350
Sierra Wireless EM7305
Sierra Wireless EM7355
Huawei MU709s-2 LGA
Huawei MU709s-2 mPCIe
Huawei ME909s-821 mPCIe
Huawei ME909s-821 LGA
Huawei ME909s-120 mPCIe EU
Huawei ME909s-120 LGA EU
Huawei MU709s-6 mPCIe
SimCom SIM7100E LTE SMT EU
SimCom SM7100A LTE SMT US
SimCom SIM7100E LTE mPCIe EU
SimCom SIM7100A LTE mPCIe US
SimCom SIM7100C LTE mPCIe China
Huawei ME906s-158 M.2 EU
Huawei ME909s-120 LGA dev.kit
Sierra Wireless MC7455 LTE Cat 6
Sierra Wireless EM7455 LTE Cat 6
SimCom SIM7100E LTE mPCIe SIM
Sierra Wireless MC7430 mPCIe
Sierra Wireless EM7430 LTE Cat 6
ZTE ME3610 E1A LCC
Techship Starter kit Huawei ME909s
SIMCom SIM7500A LTE SMT US
SIMCom SIM7500E LTE SMT EU
Huawei MU709s-2 LGA TTS
Welink ME3630 E1C LCC EU
Welink ME3630 E1C mPCIe EU
SIMCom SIM7500E LTE mPCIe EU
Welink ME3630 U1A LCC (US)
Welink ME3630 U1A mPCIe (US)
SIMCom SIM7500SA LTE mPCIe Audio
Telit LM940A11 LTE CAT-11, GPS, mPCIe
Telit LE910-EU V2 LTE CAT-4, mPCIe
Telit LE910-SV V2 LTE CAT-4, Verizon, mPCIe
Telit LE910-NA V2 LTE CAT-4, AT T, TM, mPCIe
Telit LE910-AU V2 LTE CAT-4, Telstra, mPCIe
Telit LE910-NA1 LTE CAT-1 LGA
Telit LE910-EU1 LTE CAT-1 LGA
Telit LE910-SV1 LTE CAT-1 LGA
Telit LE910-EU V2 LTE CAT-4 LGA
Telit LE910-NA V2 LTE CAT-4 LGA
Telit LE910D1-E1 LTE CAT-1 LGA
SIMCom SIM7600E-H LTE SMT EU
SIMCom SIM7600E-H LTE CAT-4 mPCIe EU
Sierra Wireless EM7565 LTE CAT-12
Welink ME3630 C1C mPCIe CN
SIMCom SIM7600E-H LTE CAT-4 mPCIe SIM
SIMCom SIM7600A-H LTE CAT-4 mPCIe Audio
Welink ME3630 E1C M.2 EU
Welink ME3630 E2C CAT-1 M.2 EU
Telit LE910-NA V2 LTE CAT-4, S.SKU, mPCIe
SIMCom SIM7600SA-H LTE CAT-4 mPCIe
SIMCom SIM7600A-H LTE CAT-4 mPCIe US
SIMCom SIM7600V-H LTE CAT-4 mPCIe Audio Verizon
SIMCom SIM7600SA-H LTE CAT-4 mPCIe with SIM holder
SIMCom SIM7600E LTE CAT-1 mPCIe
SIMCom SIM7600SA LTE CAT-1 mPCIe
SIMCom SIM7600E-H LTE CAT 4 -mPCIE with Audio
Telit LM960 LTE CAT-18, GPS, mPCIe
Sierra Wireless EM7511 LTE CAT-12
Sierra Wireless EM7565, CAT-12, M.2 CBRS Enabled
SIMCom SIM7600A-H LTE CAT-4 mPCIe-SIM
Telit LE910C4-NF LTE CAT-4 mPCIe
Telit LE910-NA V2 LTE CAT-4, S.SKU LGA
Telit LE910B1-NA S.SKU
Telit LE910C1-NS LTE CAT-1 Sprint mPCIe
Telit LE910C1-NA LTE CAT-1 AT&T LGA
Telit LE910C1-NS LTE CAT-1 Sprint LGA
SIMCom SIM7600G-H LTE CAT-4 mPCIe
Telit LE910-NA1 S.SKU
Telit LE910-JN1
Telit LE910C1-AP
Telit LE910C1-EU
Telit LE910B1-NA
Telit LE910B1-SA
Telit LE910-AU V2
Telit LE910-SV V2
Telit LE910B4-NA
Telit LE910C4-NF
Telit LE910-PCI (LE910-SV1)
Telit LE910-PCI (LE910-EU1)
Telit LE910-PCI (LE910-JN1)
Telit LE910-PCI (LE910-NA1)
Telit LE910-PCI (LE910C1-AP)
Telit LE910-PCI (LE910C1-NA)
Telit LE910C1-EU LTE CAT-1 mPCIe
Telit LE910C4-EU LTE CAT-4 mPCIe
Telit LE910C4-EU LTE CAT-4 mPCIe SIM
Telit LE910C1-NF
Telit LM940A11, HW Rev. 2, LTE CAT-11, GPS, mPCIe
Telit LE910C4-NF LTE CAT-4 mPCIe SIM
Telit LM960A18 LTE CAT-18 mPCIe
Telit LE910C1-EU LTE CAT-1 mPCIe SIM
Gosuncn GM500 U1A mPCIe (US)
Question

How to set up a simple data connection over Qualcomm QMI interface using libqmi and driver qmi_wwan in Linux?

Solution

Several cellular modules based on Qualcomm chipsets implements the Qualcomm MSM QMI RMNET Interface.
There is a open source Linux in-kernel driver supporting this interface called qmi_wwan. The helper library libqmi can be used to communicate with the cellular devices over the interface and do cellular module configurations to control and trigger the data connection over the cellular network.

Install the libqmi Linux library using e.g. your OS package manager like apt etc.
(Check out the official libqmi page here: https://www.freedesktop.org/wiki/Software/libqmi/)
Please be aware that libqmi is a 3rd party software not distributed by the chipset or module vendors. So full compatibility on all available commands should not be expected.
There are Qualcomm chipset standard QMI commands and in addition vendors specific custom QMI commands not supported by all manufacturers, but still available in libqmi. There are also new QMI commands not supported in older chipsets and vice versa, old QMI commands no longer supported in new chipset series.

Verify that you have the Linux in-kernel qmi_wwan driver installed and loaded for the cellular modules QMI interface endpoint over USB:
lsusb -t

Can look like this:
...
|__ Port 1: Dev 3, If 2, Class=Vendor Specific Class, Driver=qmi_wwan, 480M
...

If the driver is not loaded correctly, please verify that the cellular module is set to expose QMI RMNET network interface endpoint in its configuration. How to do so can often be found in AT commands guides, Linux implementation guides and similar from the cellular module vendors.

Libqmi library include a command line tool qmicli that can be used in a more convenient way communicate directly with the module over QMI interface for testing, scripting and troubleshooting.

The qmicli help will output information about all commands available:
qmicli --help-all

The qmi_wwan network control interfaces for modules are usually named like cdc-wdm# under /dev/ path.
Use the attribute --device or -d to specify it for qmicli in your command execution:
qmicli --device=/dev/cdc-wdm0
qmicli -d /dev/cdc-wdm0

In order to ease usage of the QMI interface and handle parallell command requests, libqmi include a proxy function to handle it correctly on the QMI interface, To use it, make sure to have the the attribute present in the qmicli command:
-p
--device-open-proxy

Example commands on how to communicate
Request module manufacturer:
qmicli -p -d /dev/cdc-wdm0 --dms-get-manufacturer

Get module model:
qmicli -p -d /dev/cdc-wdm0 --dms-get-model

Get firmware version:
qmicli -p -d /dev/cdc-wdm0 --dms-get-revision

Get module IDs (IMEI etc.):
qmicli -p -d /dev/cdc-wdm0 --dms-get-ids

Get SIM card status:
qmicli -p -d /dev/cdc-wdm0 --uim-get-card-status

The script qmi-network can be used to establish a simple data connection, it will automatically try to verify the IP framing type match them correctly between qmi_wwan driver and module (Raw-IP vs. 802.3 IP framing).

Create a config file containing your network operator APN details and if needed, the username and password.
Save it e.g. in the default location /etc/qmi-network.conf
The parameter --profile=[PATH] can be used to define the path to config when executing qmi-network.

Example config file content: APN details and enabling of proxy usage.
Add the username and password lines if it is needed for your APN:
APN=my-network-operators-apn
APN_USER=my-apn-username
APN_PASS=my-apn-password
PROXY=yes

Once the APN information is saved, you can start the network connection with the command:
qmi-network /dev/cdc-wdm0 start

The name of the related network interface in the Linux system can be acquired with the command:
qmicli -p -d /dev/cdc-wdm0 --get-wwan-iface

Once you see "Network started successfully" message, you can send a DHCP request on the network interface.
Please note that not all DHCP clients in Linux can handle Raw-IP format but udhcpc support it.
udhcpc -q -f -i wwan0

The IP information from the cellular network can also be acquired and set manually to the network interface by the user or scripting, the correct address details can be acquired from the cellular module over QMI with command:
qmicli -p -d /dev/cdc-wdm0 --wds-get-current-settings

If the connection was successfully set up and established, you now have a data connection. Ping request to a remote server using the cellular network interface can prove this:
ping -I wwan0 8.8.8.8

The ifconfig Linux tool can show the current details for the network interface:
ifconfig wwan0

To bring down and stop the cellular network connection, please use the stop command bellow:
qmi-network /dev/cdc-wdm0 stop

The ModemManager tool for Linux is based on libqmi. NetworkManager and ModemManager . Please note however that these two tools expect the cellular module interfaces to only be used by them so if you manually want to use the libqmi library or AT commands interfaces, please turn off/disable ModemManager and NetworkManager first.

The libqmi is a generic open source library for Linux systems and QMI protocol from Qualcomm, therefor there are several commands only working on selected devices and not necessarily on supported in the specific device you use, resulting in an error message.

Related products
Sierra Wireless MC7304
Sierra Wireless MC7354
SimCom SIM7100E LTE SMT EU
SimCom SIM7100E LTE mPCIe EU
SimCom SIM7100A LTE mPCIe US
SimCom SIM7100C LTE mPCIe China
Sierra Wireless MC7455 LTE Cat 6
Sierra Wireless EM7455 LTE Cat 6
SimCom SIM7100E LTE mPCIe SIM
Sierra Wireless MC7430 mPCIe
Sierra Wireless EM7430 LTE Cat 6
SIMCom SIM7500A LTE SMT US
SIMCom SIM7500E LTE SMT EU
SIMCom SIM7500E LTE mPCIe EU
SIMCom SIM7500SA LTE mPCIe Audio
Telit LM940A11 LTE CAT-11, GPS, mPCIe
SIMCom SIM7600E-H LTE SMT EU
SIMCom SIM7600E-H LTE CAT-4 mPCIe EU
Sierra Wireless EM7565 LTE CAT-12
SIMCom SIM7600E-H LTE CAT-4 mPCIe SIM
SIMCom SIM7600A-H LTE CAT-4 mPCIe Audio
SIMCom SIM7600SA-H LTE CAT-4 mPCIe
SIMCom SIM7600A-H LTE CAT-4 mPCIe US
SIMCom SIM7600V-H LTE CAT-4 mPCIe Audio Verizon
Fibocom NL668-EAU mPCIe LTE CAT-4
SIMCom SIM7600SA-H LTE CAT-4 mPCIe with SIM holder
SIMCom SIM7600E LTE CAT-1 mPCIe
SIMCom SIM7600SA LTE CAT-1 mPCIe
SIMCom SIM7600E-H LTE CAT 4 -mPCIE with Audio
Telit LM960 LTE CAT-18, GPS, mPCIe
Sierra Wireless EM7511 LTE CAT-12
Sierra Wireless EM7565, CAT-12, M.2 CBRS Enabled
Fibocom NL678-E mPCIe LTE CAT-6
SIMCom SIM7600E Development Kit
SIMCom SIM7600A-H LTE CAT-4 mPCIe-SIM
Sierra Wireless MC-WP7607 LTE CAT-4 mPCIe
Telit LE910C4-NF LTE CAT-4 mPCIe
Telit LE910C1-NS LTE CAT-1 Sprint mPCIe
SIMCom SIM7906E LTE CAT-6 M.2
SIMCom SIM7906E LTE CAT-6 mPCIe
Telit LE910C1-NA LTE CAT-1 AT&T LGA
Telit LE910C1-NS LTE CAT-1 Sprint LGA
SIMCom SIM7600G-H LTE CAT-4 mPCIe
Telit LE910C1-AP
Telit LE910C1-EU
Telit LE910C4-NF
Telit LE910C1-EU LTE CAT-1 mPCIe
Telit LE910C4-EU LTE CAT-4 mPCIe
Telit LE910C4-EU LTE CAT-4 mPCIe SIM
Telit LE910C1-NF
Telit LM940A11, HW Rev. 2, LTE CAT-11, GPS, mPCIe
Telit LE910C4-NF LTE CAT-4 mPCIe SIM
SIMCom SIM7912G LTE CAT-12 M.2
Telit LM960A18 LTE CAT-18 mPCIe
Telit LE910C1-EU LTE CAT-1 mPCIe SIM
Telit LE910C1-AP LTE CAT-1 mPCIe SIM
Telit LE910C1-NF LTE CAT-1 mPCIe
Telit LE910C4-AP LTE CAT-4 mPCIe SIM
Question

How do we configure the Simcom SIM7100, SIM7500 and SIM7600 series cellular modules for usage in Windows 8 and 10 systems and support Windows built-in connection manager?

Solution

The Simcom modules are by default set in a USB configuration used most often by Linux and Windows 7 systems. If you want to use the module in Windows 8, 8.1, 10 systems with the Windows integrated connection manager you have to once configure and set the module to expose Mobile Broadband Interface Model (MBIM) interface as bellow:

Start by installing the latest Simcom series Windows drivers (instructions included in download package). They can be found on on our dedicated product web pages.

In Windows device manager you can now find a serial interface called e.g."SimTech HS-USB AT Port 9001 (COM5)" Memorize the COM* interface number in your system.

Open a command prompt with admin rights (right click Windows icon in bottom left corner). Copy and paste the command bellow, edit port number to match the one in your system and hit enter. The command will then be sent to module overt the serial interface.
ECHO AT+CUSBPIDSWITCH=9003,1,1 >\\.\COM5

If the command is received successfully by module, a restart of the cellular module will be performed and it appears with the new USB endpoints supporting Windows 8 systems and later.

Make sure that all Simcom module end points are correctly loaded in Windows device manager, a system restart might be necessary also.

By clicking the Windows network connection symbol in the start bar or navigating to the "Cellular" topic in Windows system settings you can now activate the connection and configure APN details and enter PIN code if it is necessary for the cellular connection and subscription you have.

Question

We cannot acquire an DHCP address over qmi_wwan driver when using Raspbian Linux OS?

Solution

Raspbian uses dhcpd to probe all available network interfaces found in the system, which is problematic for the qmi_wwan driver interface, if it is done before being configured properly when using cellular modules supporting only Raw-IP.

This can be avoided by setting dhcpd to deny the related cellular module network interface (most often named wwan0 by the system).
Add to the /etc/dhcpcd.conf file in Raspbian the following line (in the end):
denyinterfaces wwan0

Now, restart the system (preferably re-power it) so cellular module fully restarts also.

At next startup, the settings should be applied and you can now configure and use the qmi interface as described in some of the others faq's, found on the Techship webpage.

Question

How can we integrate the Simcom SIM7500/SIM7600 Series Linux NDIS driver in Linux kernel without rebuilding it?

Solution

The Simcom SIM7500/SIM7600 series Linux NDIS network driver can be built and installed without rebuilding the complete Linux kernel your OS distribution uses. Please see steps and pre-requirements bellow and download the attached "Simcom SIM7500 and SIM7600 Series Linux Network NDIS driver installation files and guide (without kernel rebuild)" archive to get started.

Should you instead want to include the NDIS driver into your customized Linux kernel build, please relate to "SIMCom SIM7500 - SIM7600 series modules Linux NDIS driver and system integration guide V2.01" attached to the FAQ.

All commands are supposed to be executed with elevated system privileges/as root user.

Ensure that your original kernel was built with the following config options enabled, this will allow the option and usbnet driver pre-requirments to be included in kernel. (usually already included in larger distributions)
CONFIG_USB_SERIAL=y
CONFIG_USB_SERIAL_WWAN=y
CONFIG_USB_SERIAL_OPTION=y
CONFIG_USBNET=y

Build-tools and Linux header files for your kernel version are also required, these can be installed e.g. through your OS distributions package manager, on Debian/Ubuntu systems:
apt-get install build-essential make gcc
apt-get install linux-headers-`uname -r`

The in-kernel qmi_wwan driver should be blacklisted and prevented from loading as it will block the Simcom wwan driver, this is how it can be done e.g. in Ubuntu systems:
grep -q -F 'blacklist qmi_wwan' /etc/modprobe.d/blacklist-modem.conf || echo 'blacklist qmi_wwan' >> /etc/modprobe.d/blacklist-modem.conf

Build and install the driver:
Unzip the archive and copy the folder sim7600 to your selected working directory.
Navigate to it, e.g.:
cd /usr/src/sim7600/

Build and install the drivers:
make install

Some warnings might appear, but verify that no errors are reported.

Restarting the host system should now result in the correct network drivers being loaded for the cellular module once the USB device is detected in the system.

It can be verified by finding lsusb -t listing "Driver=simcom_wwan" for a USB endpoint:
lsusb
Bus 001 Device 005: ID 1e0e:9001 Qualcomm / Option

lsusb -t
/: Bus 01.Port 1: Dev 1, Class=root_hub, Driver=xhci_hcd/8p, 480M
|__ Port 4: Dev 5, If 0, Class=Vendor Specific Class, Driver=option, 480M
|__ Port 4: Dev 5, If 1, Class=Vendor Specific Class, Driver=option, 480M
|__ Port 4: Dev 5, If 2, Class=Vendor Specific Class, Driver=option, 480M
|__ Port 4: Dev 5, If 3, Class=Vendor Specific Class, Driver=option, 480M
|__ Port 4: Dev 5, If 4, Class=Vendor Specific Class, Driver=option, 480M
|__ Port 4: Dev 5, If 5, Class=Vendor Specific Class, Driver=simcom_wwan, 480M

dmesg | grep 'simcom_wwan'
simcom_wwan 1-4:1.5 wwan0: register 'simcom_wwan' at usb-0000:00:15.0-4, SIMCOM wwan/QMI device, 8a:d8:ff:c2:87:11

Additional make options and information:
If you've built the driver previously already, first clean out any old builds with:
make clean

If you only want to build the driver but not install it into /lib/modules/`uname -r`/kernel/drivers/net/usb/, use make without install parameter:
make

Testing of the cellular connection can easily be done by first performing the necessary initiation AT commands to the cellular module over Modem/AT commands serial interface normally located on /dev/ttyUSB2. Use e.g. minicom tool to communicate with it.
Can be installed e.g. through the distributions package manager:
apt-get install minicom

Access the serial interface:
minicom -D /dev/ttyUSB2

Please relate to AT commands guide for full details on what commands are supported.
Issue AT and check that you get OK as reply.
AT

Enable echo on characters sent to module:
ATE1

Request general info about module:
ATI

Enter the SIM pin code (if necessary for SIM card)
AT+CPIN=****

Enter your operators APN details:
AT+CGDCONT=1,"IP","my.operator.apn"

Enter APN authentication details (if necessary) further details found in the AT commands guide.
AT+CGAUTH=CID,auth_type,”password”,”username”

Check network registration:
AT+CREG?

Activate and connect the cellular data connection to the network interface installed in Linux system:
AT$QCRMCALL=1,1

When you get the reply $QCRMCALL: 1, V4 from cellular module it means that the data connection to your network operator is fully established and you can now exit the minicom tool (CTRL+A followed by Z key and Q key and select yes to exit).

Once here you can now perform a DHCP request on the cellular network interface in the Linux system by using your favorite DHCP client in Linux e.g. dhclient or udhc e.g.:
dhclient -v wwan0
udhcpc --interface=wwan0

The cellular network interfaces are normally named starting from wwan0 but might get renamed by some Linux distributions automatically. All available network interfaces can be listed with command:
ip link show

The network interface can be tested e.g. by sending ping requests to a remote server over the selected network interface:
ping -I wwan0 8.8.8.8
PING 8.8.8.8 (8.8.8.8) from 10.163.183.209 wwan0: 56(84) bytes of data.
64 bytes from 8.8.8.8: icmp_seq=1 ttl=120 time=191 ms
64 bytes from 8.8.8.8: icmp_seq=2 ttl=120 time=46.1 ms
64 bytes from 8.8.8.8: icmp_seq=3 ttl=120 time=52.8 ms
64 bytes from 8.8.8.8: icmp_seq=4 ttl=120 time=43.3 ms
^C
--- 8.8.8.8 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3004ms
rtt min/avg/max/mdev = 43.350/83.407/191.281/62.376 ms

You might also be interested in